scholarly journals HeterSkinNet

Author(s):  
Xiaoyu Pan ◽  
Jiancong Huang ◽  
Jiaming Mai ◽  
He Wang ◽  
Honglin Li ◽  
...  

Character rigging is universally needed in computer graphics but notoriously laborious. We present a new method, HeterSkinNet, aiming to fully automate such processes and significantly boost productivity. Given a character mesh and skeleton as input, our method builds a heterogeneous graph that treats the mesh vertices and the skeletal bones as nodes of different types and uses graph convolutions to learn their relationships. To tackle the graph heterogeneity, we propose a new graph network convolution operator that transfers information between heterogeneous nodes. The convolution is based on a new distance HollowDist that quantifies the relations between mesh vertices and bones. We show that HeterSkinNet is robust for production characters by providing the ability to incorporate meshes and skeletons with arbitrary topologies and morphologies (e.g., out-of-body bones, disconnected mesh components, etc.). Through exhaustive comparisons, we show that HeterSkinNet outperforms state-of-the-art methods by large margins in terms of rigging accuracy and naturalness. HeterSkinNet provides a solution for effective and robust character rigging.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
M. G. Sobamowo

The determinant of a matrix is very powerful tool that helps in establishing properties of matrices. Indisputably, its importance in various engineering and applied science problems has made it a mathematical area of increasing significance. From developed and existing methods of finding determinant of a matrix, basketweave method/Sarrus’ rule has been shown to be the simplest, easiest, very fast, accurate, and straightforward method for the computation of the determinant of 3 × 3 matrices. However, its gross limitation is that this method/rule does not work for matrices larger than 3 × 3 and this fact is well established in literatures. Therefore, the state-of-the-art methods for finding the determinants of 4 × 4 matrix and larger matrices are predominantly founded on non-basketweave method/non-Sarrus’ rule. In this work, extension of the simple, easy, accurate, and straightforward approach to the determinant of larger matrices is presented. The paper presents the developments of new method with different schemes based on the basketweave method/Sarrus’ rule for the computation of the determinant of 4 × 4. The potency of the new method is revealed in generalization of the basketweave method/non-Sarrus’ rule for the computation of the determinant of n×n (n>3) matrices. The new method is very efficient, very consistence for handy calculations, highly accurate, and fastest compared to other existing methods.



Author(s):  
Francisco Claude ◽  
Daniil Galaktionov ◽  
Roberto Konow ◽  
Susana Ladra ◽  
Óscar Pedreira

Author profiling consists in determining some demographic attributes — such as gender, age, nationality, language, religion, and others — of an author for a given document. This task, which has applications in fields such as forensics, security, or marketing, has been approached from different areas, especially from linguistics and natural language processing, by extracting different types of features from training documents, usually content — and style-based features. In this paper we address the problem by using several compression-inspired strategies that generate different models without analyzing or extracting specific features from the textual content, making them style-oblivious approaches. We analyze the behavior of these techniques, combine them and compare them with other state-of-the-art methods. We show that they can be competitive in terms of accuracy, giving the best predictions for some domains, and they are efficient in time performance.



RSC Advances ◽  
2014 ◽  
Vol 4 (102) ◽  
pp. 58127-58136
Author(s):  
Shantanu Kadam ◽  
Kumar Vanka

A computational method based on the concept of “noise” in conjunction with the representative reaction approach is proposed to solve the problem of negative numbers. The new method performs better on the front of accuracy and efficiency than other state-of-the-art methods.



Author(s):  
Antoine Gourru ◽  
Julien Velcin ◽  
Julien Jacques

Gaussian Embedding of Linked Documents (GELD) is a new method that embeds linked documents (e.g., citation networks) onto a pretrained semantic space (e.g., a set of word embeddings). We formulate the problem in such a way that we model each document as a Gaussian distribution in the word vector space. We design a generative model that combines both words and links in a consistent way. Leveraging the variance of a document allows us to model the uncertainty related to word and link generation. In most cases, our method outperforms state-of-the-art methods when using our document vectors as features for usual downstream tasks. In particular, GELD achieves better accuracy in classification and link prediction on Cora and Dblp. In addition, we demonstrate qualitatively the convenience of several properties of our method. We provide the implementation of GELD and the evaluation datasets to the community (https://github.com/AntoineGourru/DNEmbedding).



2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Wanxu Zhang ◽  
Yi Ru ◽  
Hongqi Meng ◽  
Min Liu ◽  
Xiaolei Ma ◽  
...  

Mask of damage region is the pretreatment step of the image inpainting, which plays a key role in the ultimate effect. However, state-of-the-art methods have attached significance to the inpainting model, and the mask of damage region is usually selected manually or by the conventional threshold-based method. Since manual method is time-consuming and the threshold-based method does not have the same precision for different images, we herein report a new method for automatically constructing the precise mask by the joint filtering of guided filtering andL0smoothing. It can accurately locate the boundary of damaged region in order to effectively segment the damage region and then greatly improves the ultimate effect of image inpainting. The experimental results show that the proposed method is superior to state-of-the-art methods in the step of constructing inpainting mask, especially for the damaged region with inconspicuous boundary.



2018 ◽  
Vol 7 (4) ◽  
pp. 603-622 ◽  
Author(s):  
Leonardo Gutiérrez-Gómez ◽  
Jean-Charles Delvenne

Abstract Several social, medical, engineering and biological challenges rely on discovering the functionality of networks from their structure and node metadata, when it is available. For example, in chemoinformatics one might want to detect whether a molecule is toxic based on structure and atomic types, or discover the research field of a scientific collaboration network. Existing techniques rely on counting or measuring structural patterns that are known to show large variations from network to network, such as the number of triangles, or the assortativity of node metadata. We introduce the concept of multi-hop assortativity, that captures the similarity of the nodes situated at the extremities of a randomly selected path of a given length. We show that multi-hop assortativity unifies various existing concepts and offers a versatile family of ‘fingerprints’ to characterize networks. These fingerprints allow in turn to recover the functionalities of a network, with the help of the machine learning toolbox. Our method is evaluated empirically on established social and chemoinformatic network benchmarks. Results reveal that our assortativity based features are competitive providing highly accurate results often outperforming state of the art methods for the network classification task.



Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 325
Author(s):  
Zhihao Wu ◽  
Baopeng Zhang ◽  
Tianchen Zhou ◽  
Yan Li ◽  
Jianping Fan

In this paper, we developed a practical approach for automatic detection of discrimination actions from social images. Firstly, an image set is established, in which various discrimination actions and relations are manually labeled. To the best of our knowledge, this is the first work to create a dataset for discrimination action recognition and relationship identification. Secondly, a practical approach is developed to achieve automatic detection and identification of discrimination actions and relationships from social images. Thirdly, the task of relationship identification is seamlessly integrated with the task of discrimination action recognition into one single network called the Co-operative Visual Translation Embedding++ network (CVTransE++). We also compared our proposed method with numerous state-of-the-art methods, and our experimental results demonstrated that our proposed methods can significantly outperform state-of-the-art approaches.



Author(s):  
Wei Huang ◽  
Xiaoshu Zhou ◽  
Mingchao Dong ◽  
Huaiyu Xu

AbstractRobust and high-performance visual multi-object tracking is a big challenge in computer vision, especially in a drone scenario. In this paper, an online Multi-Object Tracking (MOT) approach in the UAV system is proposed to handle small target detections and class imbalance challenges, which integrates the merits of deep high-resolution representation network and data association method in a unified framework. Specifically, while applying tracking-by-detection architecture to our tracking framework, a Hierarchical Deep High-resolution network (HDHNet) is proposed, which encourages the model to handle different types and scales of targets, and extract more effective and comprehensive features during online learning. After that, the extracted features are fed into different prediction networks for interesting targets recognition. Besides, an adjustable fusion loss function is proposed by combining focal loss and GIoU loss to solve the problems of class imbalance and hard samples. During the tracking process, these detection results are applied to an improved DeepSORT MOT algorithm in each frame, which is available to make full use of the target appearance features to match one by one on a practical basis. The experimental results on the VisDrone2019 MOT benchmark show that the proposed UAV MOT system achieves the highest accuracy and the best robustness compared with state-of-the-art methods.



2021 ◽  
Vol 11 (8) ◽  
pp. 3636
Author(s):  
Faria Zarin Subah ◽  
Kaushik Deb ◽  
Pranab Kumar Dhar ◽  
Takeshi Koshiba

Autism spectrum disorder (ASD) is a complex and degenerative neuro-developmental disorder. Most of the existing methods utilize functional magnetic resonance imaging (fMRI) to detect ASD with a very limited dataset which provides high accuracy but results in poor generalization. To overcome this limitation and to enhance the performance of the automated autism diagnosis model, in this paper, we propose an ASD detection model using functional connectivity features of resting-state fMRI data. Our proposed model utilizes two commonly used brain atlases, Craddock 200 (CC200) and Automated Anatomical Labelling (AAL), and two rarely used atlases Bootstrap Analysis of Stable Clusters (BASC) and Power. A deep neural network (DNN) classifier is used to perform the classification task. Simulation results indicate that the proposed model outperforms state-of-the-art methods in terms of accuracy. The mean accuracy of the proposed model was 88%, whereas the mean accuracy of the state-of-the-art methods ranged from 67% to 85%. The sensitivity, F1-score, and area under receiver operating characteristic curve (AUC) score of the proposed model were 90%, 87%, and 96%, respectively. Comparative analysis on various scoring strategies show the superiority of BASC atlas over other aforementioned atlases in classifying ASD and control.



2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Iram Tazim Hoque ◽  
Nabil Ibtehaz ◽  
Saumitra Chakravarty ◽  
M. Saifur Rahman ◽  
M. Sohel Rahman

Abstract Background Segmentation of nuclei in cervical cytology pap smear images is a crucial stage in automated cervical cancer screening. The task itself is challenging due to the presence of cervical cells with spurious edges, overlapping cells, neutrophils, and artifacts. Methods After the initial preprocessing steps of adaptive thresholding, in our approach, the image passes through a convolution filter to filter out some noise. Then, contours from the resultant image are filtered by their distinctive contour properties followed by a nucleus size recovery procedure based on contour average intensity value. Results We evaluate our method on a public (benchmark) dataset collected from ISBI and also a private real dataset. The results show that our algorithm outperforms other state-of-the-art methods in nucleus segmentation on the ISBI dataset with a precision of 0.978 and recall of 0.933. A promising precision of 0.770 and a formidable recall of 0.886 on the private real dataset indicate that our algorithm can effectively detect and segment nuclei on real cervical cytology images. Tuning various parameters, the precision could be increased to as high as 0.949 with an acceptable decrease of recall to 0.759. Our method also managed an Aggregated Jaccard Index of 0.681 outperforming other state-of-the-art methods on the real dataset. Conclusion We have proposed a contour property-based approach for segmentation of nuclei. Our algorithm has several tunable parameters and is flexible enough to adapt to real practical scenarios and requirements.



Sign in / Sign up

Export Citation Format

Share Document