Sparse Backbone and Optimal Distributed SINR Algorithms

2021 ◽  
Vol 17 (2) ◽  
pp. 1-34
Author(s):  
Magnús M. Halldórsson ◽  
Tigran Tonoyan

We develop randomized distributed algorithms for many of the most fundamental communication problems in wireless networks under the Signal to Interference and Noise Ratio (SINR) model of communication, including (multi-message) broadcast, local broadcast, coloring, Maximal Independent Set, and aggregation. The complexity of our algorithms is optimal up to polylogarithmic preprocessing time. It shows—contrary to expectation—that the plain vanilla SINR model is just as powerful and fast (modulo the preprocessing) as various extensions studied, including power control, carrier sense, collision detection, free acknowledgements, and geolocation knowledge. Central to these results is an efficient construction of a constant-density backbone structure over the network, which is of independent interest. This is achieved using an indirect sensing technique, where message non-reception is used to deduce information about relative node-distances.

2019 ◽  
Vol 5 (2) ◽  
pp. 1-27
Author(s):  
Martin Burtscher ◽  
Sindhu Devale ◽  
Sahar Azimi ◽  
Jayadharini Jaiganesh ◽  
Evan Powers

2021 ◽  
Author(s):  
Van-Vi Vo ◽  
Tien-Dung Nguyen ◽  
Duc-Tai Le ◽  
Moonseong Kim ◽  
Hyunseung Choo

<div>Over the past few years, the use of wireless sensor networks in a range of Internet of Things (IoT) scenarios has grown in popularity. Since IoT sensor devices have restricted battery power, a proper IoT data aggregation approach is crucial to prolong the network lifetime. To this end, current approaches typically form a virtual aggregation backbone based on a connected dominating set or maximal independent set to utilize independent transmissions of dominators. However, they usually have a fairly long aggregation delay because the dominators become bottlenecks for receiving data from all dominatees. The problem of time-efficient data aggregation in multichannel duty-cycled IoT sensor networks is analyzed in this paper. We propose a novel aggregation approach, named LInk-delay-aware REinforcement (LIRE), leveraging active slots of sensors to explore a routing structure with pipeline links, then scheduling all transmissions in a bottom-up manner. The reinforcement schedule accelerates the aggregation by exploiting unused channels and time slots left off at every scheduling round. LIRE is evaluated in a variety of simulation scenarios through theoretical analysis and performance comparisons with a state-of-the-art scheme. The simulation results show that LIRE reduces more than 80% aggregation delay compared to the existing scheme.</div>


2022 ◽  
Vol 69 (1) ◽  
pp. 1-26
Author(s):  
Leonid Barenboim ◽  
Michael Elkin ◽  
Uri Goldenberg

We consider graph coloring and related problems in the distributed message-passing model. Locally-iterative algorithms are especially important in this setting. These are algorithms in which each vertex decides about its next color only as a function of the current colors in its 1-hop-neighborhood . In STOC’93 Szegedy and Vishwanathan showed that any locally-iterative Δ + 1-coloring algorithm requires Ω (Δ log Δ + log * n ) rounds, unless there exists “a very special type of coloring that can be very efficiently reduced” [ 44 ]. No such special coloring has been found since then. This led researchers to believe that Szegedy-Vishwanathan barrier is an inherent limitation for locally-iterative algorithms and to explore other approaches to the coloring problem [ 2 , 3 , 19 , 32 ]. The latter gave rise to faster algorithms, but their heavy machinery that is of non-locally-iterative nature made them far less suitable to various settings. In this article, we obtain the aforementioned special type of coloring. Specifically, we devise a locally-iterative Δ + 1-coloring algorithm with running time O (Δ + log * n ), i.e., below Szegedy-Vishwanathan barrier. This demonstrates that this barrier is not an inherent limitation for locally-iterative algorithms. As a result, we also achieve significant improvements for dynamic, self-stabilizing, and bandwidth-restricted settings. This includes the following results: We obtain self-stabilizing distributed algorithms for Δ + 1-vertex-coloring, (2Δ - 1)-edge-coloring, maximal independent set, and maximal matching with O (Δ + log * n ) time. This significantly improves previously known results that have O(n) or larger running times [ 23 ]. We devise a (2Δ - 1)-edge-coloring algorithm in the CONGEST model with O (Δ + log * n ) time and O (Δ)-edge-coloring in the Bit-Round model with O (Δ + log n ) time. The factors of log * n and log n are unavoidable in the CONGEST and Bit-Round models, respectively. Previously known algorithms had superlinear dependency on Δ for (2Δ - 1)-edge-coloring in these models. We obtain an arbdefective coloring algorithm with running time O (√ Δ + log * n ). Such a coloring is not necessarily proper, but has certain helpful properties. We employ it to compute a proper (1 + ε)Δ-coloring within O (√ Δ + log * n ) time and Δ + 1-coloring within O (√ Δ log Δ log * Δ + log * n ) time. This improves the recent state-of-the-art bounds of Barenboim from PODC’15 [ 2 ] and Fraigniaud et al. from FOCS’16 [ 19 ] by polylogarithmic factors. Our algorithms are applicable to the SET-LOCAL model [ 25 ] (also known as the weak LOCAL model). In this model a relatively strong lower bound of Ω (Δ 1/3 ) is known for Δ + 1-coloring. However, most of the coloring algorithms do not work in this model. (In Reference [ 25 ] only Linial’s O (Δ 2 )-time algorithm and Kuhn-Wattenhofer O (Δ log Δ)-time algorithms are shown to work in it.) We obtain the first linear-in-Δ Δ + 1-coloring algorithms that work also in this model.


Sign in / Sign up

Export Citation Format

Share Document