Specializing FGPU for Persistent Deep Learning

2021 ◽  
Vol 14 (2) ◽  
pp. 1-23
Author(s):  
Rui Ma ◽  
Jia-Ching Hsu ◽  
Tian Tan ◽  
Eriko Nurvitadhi ◽  
David Sheffield ◽  
...  

Overlay architectures are a good way to enable fast development and debug on FPGAs at the expense of potentially limited performance compared to fully customized FPGA designs. When used in concert with hand-tuned FPGA solutions, performant overlay architectures can improve time-to-solution and thus overall productivity of FPGA solutions. This work tunes and specializes FGPU, an open source OpenCL-programmable GPU overlay for FPGAs. We demonstrate that our persistent deep learning (PDL )-FGPU architecture maintains the ease-of-programming and generality of GPU programming while achieving high performance from specialization for the persistent deep learning domain. We also propose an easy method to specialize for other domains. PDL-FGPU includes new instructions, along with micro-architecture and compiler enhancements. We evaluate both the FGPU baseline and the proposed PDL-FGPU on a modern high-end Intel Stratix 10 2800 FPGA in simulation running persistent DL applications (RNN, GRU, LSTM), and non-DL applications to demonstrate generality. PDL-FGPU requires 1.4–3× more ALMs, 4.4–6.4× more M20ks, and 1–9.5× more DSPs than baseline, but improves performance by 56–693× for PDL applications with an average 23.1% degradation on non-PDL applications. We integrated the PDL-FGPU overlay into Intel OPAE to measure real-world performance/power and demonstrate that PDL-FGPU is only 4.0–10.4× slower than the Nvidia V100.

Author(s):  
A. Spasov ◽  
D. Petrova-Antonova

Abstract. A great number of studies for identification and localization of buildings based on remote sensing data has been conducted over the past few decades. The majority of the more recent models make use of neural networks, which show high performance in semantic segmentation for the purpose of building detection even in complex regions like the city landscape. However, they could require a substantial amount of labelled training data depending on the diversity of objects targeted, which could be expensive and time consuming to acquire. Transfer Learning is a technique that could be used to reduce the amount of data and resources needed by applying knowledge obtained solving one problem to another one. In addition, if open-source data and models are used, this process is much more affordable. In this paper, the Transfer Learning challenges and issues are explored by utilizing an open-sourced pre-trained deep learning model on satellite data for building detection.


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 223
Author(s):  
Yen-Ling Tai ◽  
Shin-Jhe Huang ◽  
Chien-Chang Chen ◽  
Henry Horng-Shing Lu

Nowadays, deep learning methods with high structural complexity and flexibility inevitably lean on the computational capability of the hardware. A platform with high-performance GPUs and large amounts of memory could support neural networks having large numbers of layers and kernels. However, naively pursuing high-cost hardware would probably drag the technical development of deep learning methods. In the article, we thus establish a new preprocessing method to reduce the computational complexity of the neural networks. Inspired by the band theory of solids in physics, we map the image space into a noninteraction physical system isomorphically and then treat image voxels as particle-like clusters. Then, we reconstruct the Fermi–Dirac distribution to be a correction function for the normalization of the voxel intensity and as a filter of insignificant cluster components. The filtered clusters at the circumstance can delineate the morphological heterogeneity of the image voxels. We used the BraTS 2019 datasets and the dimensional fusion U-net for the algorithmic validation, and the proposed Fermi–Dirac correction function exhibited comparable performance to other employed preprocessing methods. By comparing to the conventional z-score normalization function and the Gamma correction function, the proposed algorithm can save at least 38% of computational time cost under a low-cost hardware architecture. Even though the correction function of global histogram equalization has the lowest computational time among the employed correction functions, the proposed Fermi–Dirac correction function exhibits better capabilities of image augmentation and segmentation.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1549
Author(s):  
Robert D. Chambers ◽  
Nathanael C. Yoder ◽  
Aletha B. Carson ◽  
Christian Junge ◽  
David E. Allen ◽  
...  

Collar-mounted canine activity monitors can use accelerometer data to estimate dog activity levels, step counts, and distance traveled. With recent advances in machine learning and embedded computing, much more nuanced and accurate behavior classification has become possible, giving these affordable consumer devices the potential to improve the efficiency and effectiveness of pet healthcare. Here, we describe a novel deep learning algorithm that classifies dog behavior at sub-second resolution using commercial pet activity monitors. We built machine learning training databases from more than 5000 videos of more than 2500 dogs and ran the algorithms in production on more than 11 million days of device data. We then surveyed project participants representing 10,550 dogs, which provided 163,110 event responses to validate real-world detection of eating and drinking behavior. The resultant algorithm displayed a sensitivity and specificity for detecting drinking behavior (0.949 and 0.999, respectively) and eating behavior (0.988, 0.983). We also demonstrated detection of licking (0.772, 0.990), petting (0.305, 0.991), rubbing (0.729, 0.996), scratching (0.870, 0.997), and sniffing (0.610, 0.968). We show that the devices’ position on the collar had no measurable impact on performance. In production, users reported a true positive rate of 95.3% for eating (among 1514 users), and of 94.9% for drinking (among 1491 users). The study demonstrates the accurate detection of important health-related canine behaviors using a collar-mounted accelerometer. We trained and validated our algorithms on a large and realistic training dataset, and we assessed and confirmed accuracy in production via user validation.


2017 ◽  
Vol 45 (4) ◽  
pp. 319-328 ◽  
Author(s):  
Lawrence V. Stanislawski ◽  
Kornelijus Survila ◽  
Jeffrey Wendel ◽  
Yan Liu ◽  
Barbara P. Buttenfield

Author(s):  
Austin Rovinski ◽  
Tutu Ajayi ◽  
Minsoo Kim ◽  
Guanru Wang ◽  
Mehdi Saligane
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document