Designers, the Stage Is Yours! Medium-Fidelity Prototyping of Augmented & Virtual Reality Interfaces with 360theater

2021 ◽  
Vol 5 (EICS) ◽  
pp. 1-25
Author(s):  
Maximilian Speicher ◽  
Katy Lewis ◽  
Michael Nebeling

While augmented and virtual reality technologies are becoming mainstream, it is still technically challenging and time-consuming to create new applications. Many designers draw from traditional low-fidelity prototyping methods that do not lend themselves well to designing in 3D. Developers use high-end programming frameworks such as Unity and Unreal which require significant hardware/software setups and coding skills. We see a gap in the medium-fidelity range where there is an opportunity for new tools to leverage the advantages of 360° content for AR/VR prototyping. Existing tools, however, have only limited support for 3D geometry, spatial and proxemic interactions, puppeteering, and storytelling. We present 360theater, a new method and a tool for rapid prototyping of AR/VR experiences, which takes dioramas into the virtual realm by enhancing 360° video capture with 3D geometry and simulating spatial interactions via Wizard of Oz. Our comparative evaluation of techniques with novice and experienced AR/VR designers shows that 360theater can close the gap and achieve a higher fidelity and more realistic AR/VR prototypes than comparable methods.

2017 ◽  
Author(s):  
Nicholas Gmeiner

This project aims to provide students with disabilities the same in class learning experience through virtual reality technology, 360-degree video capture, and the use of Arduino units. These technologies will be combined to facilitate communication between teachers in physical classrooms with students in virtual classrooms. The goal is to provide a person who is affected by a disability (which makes it hard to be in a traditional classroom) the same benefits of a safe and interactive learning environment.


Author(s):  
Damiano Perri ◽  
Martina Fortunelli ◽  
Marco Simonetti ◽  
Riccardo Magni ◽  
Jessica Carloni ◽  
...  

In recent years, the need to contain healthcare costs due to the growing public debt of many countries, combined with the need to reduce costly travel by patients unable to move autonomously, have captured the attention of public administrators towards tele-rehabilitation. This trend has been consolidated overwhelmingly following the Covid-19 pandemic, which has made it precarious, difficult and even dangerous for patients to access hospital facilities. We present a platform devoted to the rapid prototyping of Virtual Reality based, cognitive tele-rehabilitation exercises. Patients who experienced injury or pathology need to practice a continuous training in order to recover functional abilities, and the therapist need to monitor the outcomes of such practices. The Virtual Reality exercises are designed on Unity 3D to empower the therapist to set up personalised exercises in a easy way, enabling the patient to receive personalized stimuli, which are crucial for a positive outcome of the practice. Furthermore, the reaction speed of the system is of fundamental importance, as the temporal evolution of the scene must proceed parallel to the patient’s movements, to ensure an effective and efficient therapeutic response. So, we optimized the Virtual Reality application in order to make the loading phase and the startup phase as fast as possible and we have tested the results obtained with many devices: in particular computers and smartphones with different operating systems and hardware. The implemented platform integrates in Nu!Reha system®, a tele-rehabilitation set of services that helps patients to recover cognitive and functional capabilities.


2011 ◽  
Vol 33 (17-18) ◽  
pp. 1579-1586 ◽  
Author(s):  
Orit Bart ◽  
Tami Agam ◽  
Patrice L. Weiss ◽  
Rachel Kizony

2018 ◽  
Vol 14 (08) ◽  
pp. 169
Author(s):  
Boris Ivanov Evstatiev

A new method for the realistic visualization of virtual cables in a 2D environment, which is representing a 3D virtual reality, is presented in this paper. They are described with two consecutive cubic Bezier curves, whose common point is movable. Experiment was carried out and the optimal proportions for the parameters of the curves were obtained in order to achieve a realistic representation of cables. The suggested method has been developed for and implemented in the Engine for Virtual Electrical Engineering Equipment. The obtained results show that it is easy to manipulate the route of the virtual cables in 2D space and that they look realistic for any position of the control point.


Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1397
Author(s):  
Shuaihe Zhao ◽  
Mengyi Zhao ◽  
Shuling Dai

Multi-projector display systems are widely used in virtual reality, flight simulators, and other entertainment systems. Geometric distortion and color inconsistency are two key problems to be solved. In this paper a geometric correction principle is theoretically demonstrated and a consistency principle of geometric correction is first proposed. A new method of automatic registration of a multi-projector on a curved screen is put forward. Two pairs of binocular-cameras are used to reconstruct the curved screen. To capture feature points of the curved screen precisely, a group of red-blue coded structured light images is designed to be projected onto the screen. Geometric homography between each projector and the curved screen is calculated to gain a pre-warp template. Work which can gain a seamless display is illustrated by a six-projector system on the curved screen.


Sign in / Sign up

Export Citation Format

Share Document