scholarly journals Information Embedding in Additive Manufacturing through Printing Speed Control

2021 ◽  
Author(s):  
Karim A. ElSayed ◽  
Adam Dachowicz ◽  
Jitesh H. Panchal
Author(s):  
Aamer Nazir ◽  
Jeng-Ywan Jeng

The primary concern of the Industry 4.0 is the direct digital manufacturing of customized products on demand at high production speed, high accuracy with functional material property. Although the unique capabilities of existing additive manufacturing technologies make it suitable for direct digital manufacturing, there are numerous limitations which include low printing speed, less accuracy and repeatability, and a limited selection of materials for a particular application. Therefore, a high-speed additive manufacturing approach is proposed in this paper, that is capable of achieving high speed of production, high accuracy, and surface finish, and functional material property. For better understanding, authors describe those additive manufacturing technologies that are capable of achieving the aforementioned characteristics. For validation, samples of various dimensions were 3D printed on a selective laser sintering and a high-speed multijet fusion 3D printer. The results were compared in the context of printing speed, surface roughness (Ra), and hardness of printed parts. Results revealed that the multijet fusion process is significantly faster than its counterpart while sacrificing Ra to some extent but the hardness of printed parts is not changed significantly. The selective laser sintering-printed samples had a 15% lower Ra compared with multijet fusion samples. The results also revealed that the multijet fusion process might be able to print composite/multi-materials; however, more research needs to be done.


Author(s):  
Xiaoqing Tian ◽  
Yaling Li ◽  
Dingyifei Ma ◽  
Jiang Han ◽  
Lian Xia

Abstract In this paper, the control of strand width uniformity in extrusion-based additive manufacturing process based on machine vision is studied. Firstly, the images of the strand width are collected frame by frame by a CCD camera. Secondly, through a series of processes of images acquisition, images processing including images filtering, images binarization and information extraction, the useful information of strand width is obtained. Then, the theoretical relationship between the strand width and printing speed is obtained through experimental research, and a control model is obtained. Finally, by using the control model and the strand width obtained from images processing, the printing speed is adjusted to an appropriate value, which eventually led to the stabilization of the strand width. The uncontrolled and logarithmic controlled, are studied in this work. The results show that the logarithmic controlled strand width is more stable than the uncontrolled strand width. Therefore, the instability of strand width in material extrusion-based additive manufacturing process can be effectively solved by machine vision control.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1107
Author(s):  
Jing Tian ◽  
Run Zhang ◽  
Jiayuan Yang ◽  
Weimin Chou ◽  
Ping Xue ◽  
...  

Based on additive manufacturing of wood flour and polyhydroxyalkanoates composites using micro-screw extrusion, device and process parameters were evaluated to achieve a reliable printing. The results show that the anisotropy of samples printed by micro-screw extrusion is less obvious than that of filament extrusion fused deposition modeling. The type of micro-screw, printing speed, layer thickness, and nozzle diameter have significant effects on the performance of printed samples. The linear relationship between the influencing parameters and the screw speed is established, therefore, the performance of printed products can be controlled by the extrusion flow rate related to screw speed.


2020 ◽  
Vol 4 (2) ◽  
Author(s):  
Ikhwan Taufik ◽  
Herru Santosa Budiono ◽  
Herianto Herianto ◽  
Deni Andriyansyah

Tingkat kekasaran permukaan (Surface Roughness) merupakan salah satu hal penting dalam menentukan kualitas sebuah objek dalam dunia manufaktur tidak terkecuali teknologi Additive Manufacturing. Teknologi yang sering juga disebut 3D Printing ini juga merupakan salah satu teknologi kunci di Era Revolusi Industri 4.0 yang sedang berlangsung saat ini. Penelitian ini bertujuan untuk mengetahui pengaruh Printing Speed terhadap Surface Roughness produk yang dibuat menggunakan teknologi 3D Printing. Printing Speed merupakan salah satu parameter yang dapat diatur dan ditetapkan sebelum proses slicing dilakukan. Dalam penelitian ini, Printing Speed ditentukan 60 mm/s saat proses slicing menggunakan aplikasi CURA. Namun, variasi Printing Speed ini diatur di mesin 3D Printing yaitu 50% (spesimen ke-1), 100% (spesimen ke-2), dan 150% (spesimen ke-3). Pengukuran Surface Roughness dilakukan menggunakan Profilometer produk dari Mitutoyo seri Surftest SJ-210. Dengan batasan-batasan parameter yang ada di dalam penelitian ini, bisa disimpulkan bahwa nilai rata-rata hasil pengukuran tingkat kekasaran permukaan atau surface roughness (Ra) cenderung meningkat (semakin kasar) jika printing speed semakin ditingkatkan.


2019 ◽  
Vol 25 (6) ◽  
pp. 1095-1107
Author(s):  
Qin Qin ◽  
Jigang Huang ◽  
Jin Yao

Purpose The purpose of this paper is to enhance the accuracy as well as efficiency of high-speed machining, avoid the speed fluctuation caused by acceleration/deceleration (ACC/DEC) and increase the smoothness of feedrate in continuous corners or curves machining. The Hbot kinematic system was analyzed and combined with fused deposition modeling-based (FDM) additive manufacturing (AM) technology. Then a real-time adaptive look-ahead speed control algorithm was proposed. Design/methodology/approach To validate the performance of Hbot kinematic system and the proposed speed control algorithm, the positioning accuracy of Hbot and cross structure was compared. Also, the experimental verification was conducted among FDM based 3-D printer with cross structure as well as open source speed control algorithm (FDM with cross-OS), cross structure and the proposed speed control algorithm (FDM with cross-PS) and Hbot structure, as well as the proposed speed control algorithm (FDM with Hbot-PS), respectively. Findings The results indicate that the Hbot kinematic system leads to the high stability of positioning accuracy due to the small motion inertia. Furthermore, the experimental verification shows that the efficiency, printing precision and surface finish of models for FDM with Hbot-PS are obviously higher than that for FDM with cross-PS as well as FDM with cross-OS, while FDM with cross-OS shows the worst performance. The contribution of Hbot kinematic system and the proposed speed control algorithm to FDM based AM technology was validated by this work. Practical implications The Hbot kinematic system and proposed speed control algorithm have the important implication of improving the accuracy of FDM machines, especially in the low-price range segment. Also, this work can help future system developers show a possible way of tackling the motion inertia problem. Originality/value The study of Hbot kinematic system and proposed algorithm are expected to advise the current research for improving the accuracy as well as the efficiency of FDM-based AM technology.


1958 ◽  
Vol 4 (39) ◽  
pp. 146-147
Author(s):  
L.S. Drake ◽  
J.A. Fox ◽  
G.H.A. Gunnell

Sign in / Sign up

Export Citation Format

Share Document