Connecting the dots: rethinking the relationship between code and prose writing with functional connectivity

2021 ◽  
Author(s):  
Zachary Karas ◽  
Andrew Jahn ◽  
Westley Weimer ◽  
Yu Huang
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Robert A. McCutcheon ◽  
Toby Pillinger ◽  
Maria Rogdaki ◽  
Juan Bustillo ◽  
Oliver D. Howes

AbstractAlterations in cortical inter-areal functional connectivity, and aberrant glutamatergic signalling are implicated in the pathophysiology of schizophrenia but the relationship between the two is unclear. We used multimodal imaging to identify areas of convergence between the two systems. Two separate cohorts were examined, comprising 195 participants in total. All participants received resting state functional MRI to characterise functional brain networks and proton magnetic resonance spectroscopy (1H-MRS) to measure glutamate concentrations in the frontal cortex. Study A investigated the relationship between frontal cortex glutamate concentrations and network connectivity in individuals with schizophrenia and healthy controls. Study B also used 1H-MRS, and scanned individuals with schizophrenia and healthy controls before and after a challenge with the glutamatergic modulator riluzole, to investigate the relationship between changes in glutamate concentrations and changes in network connectivity. In both studies the network based statistic was used to probe associations between glutamate and connectivity, and glutamate associated networks were then characterised in terms of their overlap with canonical functional networks. Study A involved 76 individuals with schizophrenia and 82 controls, and identified a functional network negatively associated with glutamate concentrations that was concentrated within the salience network (p < 0.05) and did not differ significantly between patients and controls (p > 0.85). Study B involved 19 individuals with schizophrenia and 17 controls and found that increases in glutamate concentrations induced by riluzole were linked to increases in connectivity localised to the salience network (p < 0.05), and the relationship did not differ between patients and controls (p > 0.4). Frontal cortex glutamate concentrations are associated with inter-areal functional connectivity of a network that localises to the salience network. Changes in network connectivity in response to glutamate modulation show an opposite effect compared to the relationship observed at baseline, which may complicate pharmacological attempts to simultaneously correct glutamatergic and connectivity aberrations.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zijin Gu ◽  
Keith Wakefield Jamison ◽  
Mert Rory Sabuncu ◽  
Amy Kuceyeski

AbstractWhite matter structural connections are likely to support flow of functional activation or functional connectivity. While the relationship between structural and functional connectivity profiles, here called SC-FC coupling, has been studied on a whole-brain, global level, few studies have investigated this relationship at a regional scale. Here we quantify regional SC-FC coupling in healthy young adults using diffusion-weighted MRI and resting-state functional MRI data from the Human Connectome Project and study how SC-FC coupling may be heritable and varies between individuals. We show that regional SC-FC coupling strength varies widely across brain regions, but was strongest in highly structurally connected visual and subcortical areas. We also show interindividual regional differences based on age, sex and composite cognitive scores, and that SC-FC coupling was highly heritable within certain networks. These results suggest regional structure-function coupling is an idiosyncratic feature of brain organisation that may be influenced by genetic factors.


Author(s):  
Olajumoke Ogunsanya

Calls for businesses to act with concern for the environment and society create new operating scenarios in which sustainability concerns must be taken into consideration along with the primary objectives of profitability and competitiveness. These additional obligations contribute to dynamism of the marketplace and make it important for businesses to draw on creativity and innovation to find connections between the unrelated in order to establish new efficiencies that can create competitive advantage and differentiation in the environment they find themselves. The central theme of this chapter is how bisociation informs collective creativity and innovation, and influences sustainability for business organizations competing in an environment that is in a permanent state of flux. This chapter trails a series of concepts to find the relationship between the concept of bisociation, collective creativity and sustainable business practices. The aim is to show how consistent creative thinking and exploration of information in different spaces of thought can proffer innovative solutions organizations require for their long term survival and prosperity.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Diankun Gong ◽  
Weiyi Ma ◽  
Tiejun Liu ◽  
Yuening Yan ◽  
Dezhong Yao

Electronic-sports (e-sports) is a form of organized, online, multiplayer video game competition, which requires both action skills and the ability and process of forming and adapting a strategy (referred to as strategization hereafter) to achieve goals. Over the past few decades, research has shown that video gaming experience has an important impact on the plasticity of the sensorimotor, attentional, and executive brain areas. However, little research has examined the relationship between e-sports experience and the plasticity of brain networks that are related to strategization. Using resting-state fMRI data and the local functional connectivity density (lFCD) analysis, this study investigated the relationship between e-sports experience (League of Legends [LOL] in this study) and brain plasticity by comparing between top-ranking LOL players and lower-ranking (yet experienced) LOL players. Results showed that the top-ranking LOL players had superior local functional integration in the executive areas compared to lower-ranking players. Furthermore, the top-ranking players had higher lFCD in the default mode areas, which have been found related to various subprocesses (e.g., memory and planning) essential for strategization. Finally, the top-ranking players’ lFCD was related to their LOL expertise rank level, as indicated by a comprehensive score assigned by the gaming software based on players’ gaming experience and expertise. Thus, the result showed that the local functional connectivity in central executive and default mode brain areas was enhanced in the top-ranking e-sports players, suggesting that e-sports experience is related to the plasticity of the central executive and default mode areas.


2020 ◽  
Vol 20 (3) ◽  
pp. 588-603
Author(s):  
Andrzej Sokołowski ◽  
Monika Folkierska-Żukowska ◽  
Katarzyna Jednoróg ◽  
Craig A. Moodie ◽  
Wojciech Ł. Dragan

NeuroImage ◽  
2019 ◽  
Vol 196 ◽  
pp. 318-328 ◽  
Author(s):  
Feliberto de la Cruz ◽  
Andy Schumann ◽  
Stefanie Köhler ◽  
Jürgen R. Reichenbach ◽  
Gerd Wagner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document