Programming and Synthesis for Software-defined FPGA Acceleration: Status and Future Prospects

2021 ◽  
Vol 14 (4) ◽  
pp. 1-39
Author(s):  
Yi-Hsiang Lai ◽  
Ecenur Ustun ◽  
Shaojie Xiang ◽  
Zhenman Fang ◽  
Hongbo Rong ◽  
...  

FPGA-based accelerators are increasingly popular across a broad range of applications, because they offer massive parallelism, high energy efficiency, and great flexibility for customizations. However, difficulties in programming and integrating FPGAs have hindered their widespread adoption. Since the mid 2000s, there has been extensive research and development toward making FPGAs accessible to software-inclined developers, besides hardware specialists. Many programming models and automated synthesis tools, such as high-level synthesis, have been proposed to tackle this grand challenge. In this survey, we describe the progression and future prospects of the ongoing journey in significantly improving the software programmability of FPGAs. We first provide a taxonomy of the essential techniques for building a high-performance FPGA accelerator, which requires customizations of the compute engines, memory hierarchy, and data representations. We then summarize a rich spectrum of work on programming abstractions and optimizing compilers that provide different trade-offs between performance and productivity. Finally, we highlight several additional challenges and opportunities that deserve extra attention by the community to bring FPGA-based computing to the masses.

2021 ◽  
Vol 14 (6) ◽  
pp. 1019-1032
Author(s):  
Yuanyuan Sun ◽  
Sheng Wang ◽  
Huorong Li ◽  
Feifei Li

Data confidentiality is one of the biggest concerns that hinders enterprise customers from moving their workloads to the cloud. Thanks to the trusted execution environment (TEE), it is now feasible to build encrypted databases in the enclave that can process customers' data while keeping it confidential to the cloud. Though some enclave-based encrypted databases emerge recently, there remains a large unexplored area in between about how confidentiality can be achieved in different ways and what influences are implied by them. In this paper, we first provide a broad exploration of possible design choices in building encrypted database storage engines, rendering trade-offs in security, performance and functionality. We observe that choices on different dimensions can be independent and their combination determines the overall trade-off of the entire storage. We then propose Enclage , an encrypted storage engine that makes practical trade-offs. It adopts many enclave-native designs, such as page-level encryption, reduced enclave interaction, and hierarchical memory buffer, which offer high-level security guarantee and high performance at the same time. To make better use of the limited enclave memory, we derive the optimal page size in enclave and adopt delta decryption to access large data pages with low cost. Our experiments show that Enclage outperforms the baseline, a common storage design in many encrypted databases, by over 13x in throughput and about 5x in storage savings.


2019 ◽  
Vol 214 ◽  
pp. 01003
Author(s):  
Sioni Summers ◽  
Andrew Rose

Track reconstruction at the CMS experiment uses the Combinatorial Kalman Filter. The algorithm computation time scales exponentially with pileup, which will pose a problem for the High Level Trigger at the High Luminosity LHC. FPGAs, which are already used extensively in hardware triggers, are becoming more widely used for compute acceleration. With a combination of high performance, energy efficiency, and predictable and low latency, FPGA accelerators are an interesting technology for high energy physics. Here, progress towards porting of the CMS track reconstruction to Maxeler Technologies’ Dataflow Engines is shown, programmed with their high level language MaxJ. The performance is compared to CPUs, and further steps to optimise for the architecture are presented.


Author(s):  
Charles W. Allen

With respect to structural consequences within a material, energetic electrons, above a threshold value of energy characteristic of a particular material, produce vacancy-interstial pairs (Frenkel pairs) by displacement of individual atoms, as illustrated for several materials in Table 1. Ion projectiles produce cascades of Frenkel pairs. Such displacement cascades result from high energy primary knock-on atoms which produce many secondary defects. These defects rearrange to form a variety of defect complexes on the time scale of tens of picoseconds following the primary displacement. A convenient measure of the extent of irradiation damage, both for electrons and ions, is the number of displacements per atom (dpa). 1 dpa means, on average, each atom in the irradiated region of material has been displaced once from its original lattice position. Displacement rate (dpa/s) is proportional to particle flux (cm-2s-1), the proportionality factor being the “displacement cross-section” σD (cm2). The cross-section σD depends mainly on the masses of target and projectile and on the kinetic energy of the projectile particle.


2020 ◽  
Author(s):  
James McDonagh ◽  
William Swope ◽  
Richard L. Anderson ◽  
Michael Johnston ◽  
David J. Bray

Digitization offers significant opportunities for the formulated product industry to transform the way it works and develop new methods of business. R&D is one area of operation that is challenging to take advantage of these technologies due to its high level of domain specialisation and creativity but the benefits could be significant. Recent developments of base level technologies such as artificial intelligence (AI)/machine learning (ML), robotics and high performance computing (HPC), to name a few, present disruptive and transformative technologies which could offer new insights, discovery methods and enhanced chemical control when combined in a digital ecosystem of connectivity, distributive services and decentralisation. At the fundamental level, research in these technologies has shown that new physical and chemical insights can be gained, which in turn can augment experimental R&D approaches through physics-based chemical simulation, data driven models and hybrid approaches. In all of these cases, high quality data is required to build and validate models in addition to the skills and expertise to exploit such methods. In this article we give an overview of some of the digital technology demonstrators we have developed for formulated product R&D. We discuss the challenges in building and deploying these demonstrators.<br>


2019 ◽  
Author(s):  
Zhao-Yang Zhang ◽  
Tao LI

Solar energy and ambient heat are two inexhaustible energy sources for addressing the global challenge of energy and sustainability. Solar thermal battery based on molecular switches that can store solar energy and release it as heat has recently attracted great interest, but its development is severely limited by both low energy density and short storage stability. On the other hand, the efficient recovery and upgrading of low-grade heat, especially that of the ambient heat, has been a great challenge. Here we report that solar energy and ambient heat can be simultaneously harvested and stored, which is enabled by room-temperature photochemical crystal-to-liquid transitions of small-molecule photoswitches. The two forms of energy are released together to produce high-temperature heat during the reverse photochemical phase change. This strategy, combined with molecular design, provides high energy density of 320-370 J/g and long-term storage stability (half-life of about 3 months). On this basis, we fabricate high-performance, flexible film devices of solar thermal battery, which can be readily recharged at room temperature with good cycling ability, show fast rate of heat release, and produce high-temperature heat that is >20<sup> o</sup>C higher than the ambient temperature. Our work opens up a new avenue to harvest ambient heat, and demonstrate a feasible strategy to develop high-performance solar thermal battery.


2019 ◽  
Author(s):  
Zhao-Yang Zhang ◽  
Tao LI

Solar energy and ambient heat are two inexhaustible energy sources for addressing the global challenge of energy and sustainability. Solar thermal battery based on molecular switches that can store solar energy and release it as heat has recently attracted great interest, but its development is severely limited by both low energy density and short storage stability. On the other hand, the efficient recovery and upgrading of low-grade heat, especially that of the ambient heat, has been a great challenge. Here we report that solar energy and ambient heat can be simultaneously harvested and stored, which is enabled by room-temperature photochemical crystal-to-liquid transitions of small-molecule photoswitches. The two forms of energy are released together to produce high-temperature heat during the reverse photochemical phase change. This strategy, combined with molecular design, provides high energy density of 320-370 J/g and long-term storage stability (half-life of about 3 months). On this basis, we fabricate high-performance, flexible film devices of solar thermal battery, which can be readily recharged at room temperature with good cycling ability, show fast rate of heat release, and produce high-temperature heat that is >20<sup> o</sup>C higher than the ambient temperature. Our work opens up a new avenue to harvest ambient heat, and demonstrate a feasible strategy to develop high-performance solar thermal battery.


1973 ◽  
Vol 12 (1) ◽  
pp. 1-30
Author(s):  
Syed Nawab Haider Naqvi

The recent uncertainties about aid flows have underscored the need for achieving an early independence from foreign aid. The Perspective Plan (1,965-85) had envisaged the termination of Pakistan's dependence on foreign aid by 1985. However, in the context of West Pakistan alone the time horizon can now be advanced by several years with considerable confidence in its economy to pull the trick. The difficulties of achieving independence from foreign aid can be seen by reference to the fact that aid flows make it possible for the policy-maker to pursue such ostensibly incompatible objectives as a balance in international payments (i.e., foreign aid finances the balance of payments), higher rates of economic growth (Lei, it pulls up domestic saving and investment levels), a high level of employment (i.e., it keeps the industries working at a fuller capacity than would otherwise be the case), and a reasonably stable price level (i.e., it lets a higher level of imports than would otherwise be possible). Without aid, then a simultaneous attainment of all these objectives at the former higher levels together with the balance in foreign payments may become well-nigh impos¬sible. Choices are, therefore, inevitable not for definite places in the hierarchy of values, but rather for occasional "trade-offs". That is to say, we will have to" choose how much to sacrifice for the attainment of one goal for the sake of somewhat better realization of another.


2020 ◽  
Vol 12 (2) ◽  
pp. 19-50 ◽  
Author(s):  
Muhammad Siddique ◽  
Shandana Shoaib ◽  
Zahoor Jan

A key aspect of work processes in service sector firms is the interconnection between tasks and performance. Relational coordination can play an important role in addressing the issues of coordinating organizational activities due to high level of interdependence complexity in service sector firms. Research has primarily supported the aspect that well devised high performance work systems (HPWS) can intensify organizational performance. There is a growing debate, however, with regard to understanding the “mechanism” linking HPWS and performance outcomes. Using relational coordination theory, this study examines a model that examine the effects of subsets of HPWS, such as motivation, skills and opportunity enhancing HR practices on relational coordination among employees working in reciprocal interdependent job settings. Data were gathered from multiple sources including managers and employees at individual, functional and unit levels to know their understanding in relation to HPWS and relational coordination (RC) in 218 bank branches in Pakistan. Data analysis via structural equation modelling, results suggest that HPWS predicted RC among officers at the unit level. The findings of the study have contributions to both, theory and practice.


Sign in / Sign up

Export Citation Format

Share Document