scholarly journals Are Preferences Useful for Better Assistance?

2021 ◽  
Vol 10 (4) ◽  
pp. 1-19
Author(s):  
Gerard Canal ◽  
Carme Torras ◽  
Guillem Alenyà

Assistive Robots have an inherent need of adapting to the user they are assisting. This is crucial for the correct development of the task, user safety, and comfort. However, adaptation can be performed in several manners. We believe user preferences are key to this adaptation. In this article, we evaluate the use of preferences for Physically Assistive Robotics tasks in a Human-Robot Interaction user evaluation. Three assistive tasks have been implemented consisting of assisted feeding, shoe-fitting, and jacket dressing, where the robot performs each task in a different manner based on user preferences. We assess the ability of the users to determine which execution of the task used their chosen preferences (if any). The obtained results show that most of the users were able to successfully guess the cases where their preferences were used even when they had not seen the task before. We also observe that their satisfaction with the task increases when the chosen preferences are employed. Finally, we also analyze the user’s opinions regarding assistive tasks and preferences, showing promising expectations as to the benefits of adapting the robot behavior to the user through preferences.

Robotica ◽  
2007 ◽  
Vol 25 (5) ◽  
pp. 521-527 ◽  
Author(s):  
Harsha Medicherla ◽  
Ali Sekmen

SUMMARYAn understanding of how humans and robots can successfully interact to accomplish specific tasks is crucial in creating more sophisticated robots that may eventually become an integral part of human societies. A social robot needs to be able to learn the preferences and capabilities of the people with whom it interacts so that it can adapt its behaviors for more efficient and friendly interaction. Advances in human– computer interaction technologies have been widely used in improving human–robot interaction (HRI). It is now possible to interact with robots via natural communication means such as speech. In this paper, an innovative approach for HRI via voice-controllable intelligent user interfaces is described. The design and implementation of such interfaces are described. The traditional approaches for human–robot user interface design are explained and the advantages of the proposed approach are presented. The designed intelligent user interface, which learns user preferences and capabilities in time, can be controlled with voice. The system was successfully implemented and tested on a Pioneer 3-AT mobile robot. 20 participants, who were assessed on spatial reasoning ability, directed the robot in spatial navigation tasks to evaluate the effectiveness of the voice control in HRI. Time to complete the task, number of steps, and errors were collected. Results indicated that spatial reasoning ability and voice-control were reliable predictors of efficiency of robot teleoperation. 75% of the subjects with high spatial reasoning ability preferred using voice-control over manual control. The effect of spatial reasoning ability in teleoperation with voice-control was lower compared to that of manual control.


2021 ◽  
Author(s):  
Lauren Dwyer

Anxiety has a lifetime prevalence of 31% of Canadians (Katzman et al. 2014). In Canada, psychological services are only covered by provincial health insurance if the psychologist is employed in the public sector; this means long wait times in the public system or expensive private coverage (Canadian Psychological Association). Currently, social robots and Socially Assistive Robots (SAR) are used in the treatment of elderly individuals in nursing homes, as well as children with autism (Feil-Seifer & Matarić, 2011; Tapus et al., 2012). The following MRP is the first step in a long-term project that will contend with the issues faced by individuals with anxiety using a combined communications, social robotics, and mental health approach to develop an anxiety specific socially assistive robot companion. The focus of this MRP is the development of a communication model that includes three core aspects of a social robot companion: Human-Robot Interaction (HRI), anxiety disorders, and technical design. The model I am developing will consist of a series of suggestions for the robot that could be implemented in a long-term study. The model will include suggestions towards the design, communication means, and technical requirements, as well as a model for evaluating the robot from a Human-Robot- Interaction perspective. This will be done through an evaluation of three robots, Sphero’s BB-8 App Enabled Droid, Aldebaran’s Nao, and the Spin Master Zoomer robot. Evaluation measures include modified versions of Shneiderman’s (1992) evaluation of human-factors goals, Feil-Seifer et al.’s (2007) SAR evaluative questions, prompts for the description of both the communication methods and the physical characteristics, and a record of the emotional response of the user when interacting with the robot.


2021 ◽  
Author(s):  
Lauren Dwyer

Anxiety has a lifetime prevalence of 31% of Canadians (Katzman et al. 2014). In Canada, psychological services are only covered by provincial health insurance if the psychologist is employed in the public sector; this means long wait times in the public system or expensive private coverage (Canadian Psychological Association). Currently, social robots and Socially Assistive Robots (SAR) are used in the treatment of elderly individuals in nursing homes, as well as children with autism (Feil-Seifer & Matarić, 2011; Tapus et al., 2012). The following MRP is the first step in a long-term project that will contend with the issues faced by individuals with anxiety using a combined communications, social robotics, and mental health approach to develop an anxiety specific socially assistive robot companion. The focus of this MRP is the development of a communication model that includes three core aspects of a social robot companion: Human-Robot Interaction (HRI), anxiety disorders, and technical design. The model I am developing will consist of a series of suggestions for the robot that could be implemented in a long-term study. The model will include suggestions towards the design, communication means, and technical requirements, as well as a model for evaluating the robot from a Human-Robot- Interaction perspective. This will be done through an evaluation of three robots, Sphero’s BB-8 App Enabled Droid, Aldebaran’s Nao, and the Spin Master Zoomer robot. Evaluation measures include modified versions of Shneiderman’s (1992) evaluation of human-factors goals, Feil-Seifer et al.’s (2007) SAR evaluative questions, prompts for the description of both the communication methods and the physical characteristics, and a record of the emotional response of the user when interacting with the robot.


Author(s):  
Mark Tee Kit Tsun ◽  
Lau Bee Theng ◽  
Hudyjaya Siswoyo Jo ◽  
Patrick Then Hang Hui

This chapter summarizes the findings of a study on robotics research and application for assisting children with disabilities between the years 2009 and 2013. The said disabilities include impairment of motor skills, locomotion, and social interaction that is commonly attributed to children suffering from Autistic Spectrum Disorders (ASD) and Cerebral Palsy (CP). As opposed to assistive technologies for disabilities that largely account for restoration of physical capabilities, disabled children also require dedicated rehabilitation for social interaction and mental health. As such, the breadth of this study covers existing efforts in rehabilitation of both physical and socio-psychological domains, which involve Human-Robot Interaction. Overviewed topics include assisted locomotion training, passive stretching and active movement rehabilitation, upper-extremity motor function, social interactivity, therapist-mediators, active play encouragement, as well as several life-long assistive robotics in current use. This chapter concludes by drawing attention to ethical and adoption issues that may obstruct the field's effectiveness.


Entropy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 199 ◽  
Author(s):  
Soheil Keshmiri ◽  
Hidenobu Sumioka ◽  
Ryuji Yamazaki ◽  
Hiroshi Ishiguro

Todays’ communication media virtually impact and transform every aspect of our daily communication and yet the extent of their embodiment on our brain is unexplored. The study of this topic becomes more crucial, considering the rapid advances in such fields as socially assistive robotics that envision the use of intelligent and interactive media for providing assistance through social means. In this article, we utilize the multiscale entropy (MSE) to investigate the effect of the physical embodiment on the older people’s prefrontal cortex (PFC) activity while listening to stories. We provide evidence that physical embodiment induces a significant increase in MSE of the older people’s PFC activity and that such a shift in the dynamics of their PFC activation significantly reflects their perceived feeling of fatigue. Our results benefit researchers in age-related cognitive function and rehabilitation who seek for the adaptation of these media in robot-assistive cognitive training of the older people. In addition, they offer a complementary information to the field of human-robot interaction via providing evidence that the use of MSE can enable the interactive learning algorithms to utilize the brain’s activation patterns as feedbacks for improving their level of interactivity, thereby forming a stepping stone for rich and usable human mental model.


Robotics ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 1 ◽  
Author(s):  
Tejas Kumar Shastha ◽  
Maria Kyrarini ◽  
Axel Gräser

Meal assistant robots form a very important part of the assistive robotics sector since self-feeding is a priority activity of daily living (ADL) for people suffering from physical disabilities like tetraplegia. A quick survey of the current trends in this domain reveals that, while tremendous progress has been made in the development of assistive robots for the feeding of solid foods, the task of feeding liquids from a cup remains largely underdeveloped. Therefore, this paper describes an assistive robot that focuses specifically on the feeding of liquids from a cup using tactile feedback through force sensors with direct human–robot interaction (HRI). The main focus of this paper is the application of reinforcement learning (RL) to learn what the best robotic actions are, based on the force applied by the user. A model of the application environment is developed based on the Markov decision process and a software training procedure is designed for quick development and testing. Five of the commonly used RL algorithms are investigated, with the intention of finding the best fit for training, and the system is tested in an experimental study. The preliminary results show a high degree of acceptance by the participants. Feedback from the users indicates that the assistive robot functions intuitively and effectively.


Sign in / Sign up

Export Citation Format

Share Document