Pushing the Limits of Long Range Wireless Sensing with LoRa

Author(s):  
Binbin Xie ◽  
Yuqing Yin ◽  
Jie Xiong

Wireless sensing is an exciting new research area which enables a large variety of applications ranging from coarse-grained daily activity recognition to fine-grained vital sign monitoring. While promising in many aspects, one critical issue is the limited sensing range because weak reflection signals are used for sensing. Recently, LoRa signals are exploited for wireless sensing, moving a big step towards long-range sensing. Although promising, there is still a huge room for improvement. In this work, we qualitatively characterize the relationship between target movements and target-induced signal variations, and propose signal processing methods to enlarge the induced signal variation to achieve a longer sensing range. Experiment results show that the proposed system (1) pushes the contact-free sensing range of human walking from the state-of-the-art 50 m to 120 m; (2) achieves a sensing range of 75 m for fine-grained respiration sensing; and (3) demonstrates human respiration sensing even through seven concrete walls.

Author(s):  
Youwei Zeng ◽  
Jinyi Liu ◽  
Jie Xiong ◽  
Zhaopeng Liu ◽  
Dan Wu ◽  
...  

Despite extensive research effort on contactless WiFi sensing over the past few years, there are still significant barriers hindering its wide application. One key issue is the limited sensing range due to the intrinsic nature of employing the weak target-reflected signal for sensing and therefore the sensing range is much smaller than the communication range. In this work, we address this challenging issue, moving WiFi sensing one step closer to real-world adoption. The key idea is to effectively utilize the multiple antennas widely available on commodity WiFi access points to simultaneously strengthen the target-reflected signal and reduce the noise. Although traditional beamforming schemes can help increase the signal strength, they are designed for communication and can not be directly applied to benefit sensing. To effectively increase the WiFi sensing range using multiple antennas, we first propose a new metric that quantifies the signal sensing capability. We then propose novel signal processing methods, which lay the theoretical foundation to support beamforming-based long-range WiFi sensing. To validate the proposed idea, we develop two sensing applications: fine-grained human respiration monitoring and coarse-grained human walking tracking. Extensive experiments show that: (i) the human respiration sensing range is significantly increased from the state-of-the-art 6-8 m to 11 m;1 and (ii) human walking can be accurately tracked even when the target is 18 m away from the WiFi transceivers, outperforming the sensing range of the state-of-the-art by 50%.


2021 ◽  
Vol 25 (2) ◽  
pp. 33-37
Author(s):  
Fusang Zhang ◽  
Zhaoxin Chang ◽  
Jie Xiong ◽  
Daqing Zhang

Wireless sensing received a great amount of attention in recent years and various wireless technologies have been exploited for sensing, including WiFi [1], RFID [2], ultrasound [3], 60 GHz mmWave [4] and visible light [5]. The key advantage of wireless sensing over traditional sensing is that the target does not need to be equipped with any sensor(s) and the wireless signal itself is being used for sensing. Exciting new applications have been enabled, such as passive localization [6] and contactless human activity sensing [7]. While promising in many aspects, one key limitation of current wireless sensing techniques is the very small sensing range. This is because while both direct path and reflection path signals are used for communication, only the weak target-reflection signals can be used for sensing. Take Wi-Fi as an example: the communication range can reach 20 to 50 meters indoors but its sensing range is merely 4 to 8 meters. This small range further limits the through-wall sensing capability of Wi-Fi. On the other hand, many applications do require long-range and through-wall sensing capability. In a fire rescue scenario, the sensing device cannot be placed close to the building, and the long-range through-wall sensing capabilities are critical for detecting people deep inside the building. Table I summarizes the sensing range of existing wireless technologies. We can see that long-range through-wall sensing is still missing with wireless sensing.


Author(s):  
Iria Del Rio ◽  
Amália Mendes

We present the general architecture of the error annotation system applied to the COPLE2 corpus, a learner corpus of Portuguese implemented on the TEITOK platform. We give a general overview of the corpus and of the TEITOK functionalities and describe how the error annotation is structured in a two-level system: first, a fully manual token-based and coarse-grained annotation is applied and produces a rough classification of the errors in three categories, paired with multi-level information for POS and lemma; second, a multi-word and fine-grained annotation in standoff is then semi-automatically produced based on the first level of annotation. The token-based level has been applied to 47% of the total corpus. We compare our system with other proposals of error annotation, and discuss the fine-grained tag set and the experiments to validate its applicability. An inter-annotator (IAA) experiment was performed on the two stages of our system using Cohen’s kappa and it achieved good results on both levels. We explore the possibilities offered by the tokenlevel error annotation, POS and lemma to automatically generate the fine-grained error tags by applying conversion scripts. The model is planned in such a way as to reduce manual effort and rapidly increase the coverage of the error annotation over the full corpus. As the first learner corpus of Portuguese with error annotation, we expect COPLE2 to support new research in different fields connected with Portuguese as second/foreign language, like Second Language Acquisition/Teaching or Computer Assisted Learning.


2021 ◽  
pp. 1-24
Author(s):  
Qiushuo Zheng ◽  
Hao Wen ◽  
Meng Wang ◽  
Guilin Qi

Abstract Existing visual scene understanding methods mainly focus on identifying coarse-grained concepts about the visual objects and their relationships, largely neglecting fine-grained scene understanding. In fact, many data-driven applications on the web (e.g. newsreading and e-shopping) require to accurately recognize much less coarse concepts as entities and properly link to a knowledge graph, which can take their performance to the next level. In light of this, in this paper, we identify a new research task: visual entity linking for fine-grained scene understanding. To accomplish the task, we first extract features of candidate entities from different modalities, i.e., visual features, textual features, and KG features. Then, we design a deep modal-attention neural network-based learning-to-rank method aggregates all features and map visual objects to the entities in KG. Extensive experimental results on the newly constructed dataset show that our proposed method is effective as it significantly improves the accuracy performance from 66.46% to 83.16% comparing with baselines.


Author(s):  
Iria Del Rio ◽  
Amália Mendes

We present the general architecture of the error annotation system applied to the COPLE2 corpus, a learner corpus of Portuguese implemented on the TEITOK platform. We give a general overview of the corpus and of the TEITOK functionalities and describe how the error annotation is structured in a two-level system: first, a fully manual token-based and coarse-grained annotation is applied and produces a rough classification of the errors in three categories, paired with multi-level information for POS and lemma; second, a multi-word and fine-grained annotation in standoff is then semi-automatically produced based on the first level of annotation. The token-based level has been applied to 47% of the total corpus. We compare our system with other proposals of error annotation, and discuss the fine-grained tag set and the experiments to validate its applicability. An inter-annotator (IAA) experiment was performed on the two stages of our system using Cohen’s kappa and it achieved good results on both levels. We explore the possibilities offered by the tokenlevel error annotation, POS and lemma to automatically generate the fine-grained error tags by applying conversion scripts. The model is planned in such a way as to reduce manual effort and rapidly increase the coverage of the error annotation over the full corpus. As the first learner corpus of Portuguese with error annotation, we expect COPLE2 to support new research in different fields connected with Portuguese as second/foreign language, like Second Language Acquisition/Teaching or Computer Assisted Learning.


Author(s):  
Wang Zheng-fang ◽  
Z.F. Wang

The main purpose of this study highlights on the evaluation of chloride SCC resistance of the material,duplex stainless steel,OOCr18Ni5Mo3Si2 (18-5Mo) and its welded coarse grained zone(CGZ).18-5Mo is a dual phases (A+F) stainless steel with yield strength:512N/mm2 .The proportion of secondary Phase(A phase) accounts for 30-35% of the total with fine grained and homogeneously distributed A and F phases(Fig.1).After being welded by a specific welding thermal cycle to the material,i.e. Tmax=1350°C and t8/5=20s,microstructure may change from fine grained morphology to coarse grained morphology and from homogeneously distributed of A phase to a concentration of A phase(Fig.2).Meanwhile,the proportion of A phase reduced from 35% to 5-10°o.For this reason it is known as welded coarse grained zone(CGZ).In association with difference of microstructure between base metal and welded CGZ,so chloride SCC resistance also differ from each other.Test procedures:Constant load tensile test(CLTT) were performed for recording Esce-t curve by which corrosion cracking growth can be described, tf,fractured time,can also be recorded by the test which is taken as a electrochemical behavior and mechanical property for SCC resistance evaluation. Test environment:143°C boiling 42%MgCl2 solution is used.Besides, micro analysis were conducted with light microscopy(LM),SEM,TEM,and Auger energy spectrum(AES) so as to reveal the correlation between the data generated by the CLTT results and micro analysis.


Author(s):  
Zhuliang Yao ◽  
Shijie Cao ◽  
Wencong Xiao ◽  
Chen Zhang ◽  
Lanshun Nie

In trained deep neural networks, unstructured pruning can reduce redundant weights to lower storage cost. However, it requires the customization of hardwares to speed up practical inference. Another trend accelerates sparse model inference on general-purpose hardwares by adopting coarse-grained sparsity to prune or regularize consecutive weights for efficient computation. But this method often sacrifices model accuracy. In this paper, we propose a novel fine-grained sparsity approach, Balanced Sparsity, to achieve high model accuracy with commercial hardwares efficiently. Our approach adapts to high parallelism property of GPU, showing incredible potential for sparsity in the widely deployment of deep learning services. Experiment results show that Balanced Sparsity achieves up to 3.1x practical speedup for model inference on GPU, while retains the same high model accuracy as finegrained sparsity.


2021 ◽  
Vol 83 (4) ◽  
Author(s):  
S. Adam Soule ◽  
Michael Zoeller ◽  
Carolyn Parcheta

AbstractHawaiian and other ocean island lava flows that reach the coastline can deposit significant volumes of lava in submarine deltas. The catastrophic collapse of these deltas represents one of the most significant, but least predictable, volcanic hazards at ocean islands. The volume of lava deposited below sea level in delta-forming eruptions and the mechanisms of delta construction and destruction are rarely documented. Here, we report on bathymetric surveys and ROV observations following the Kīlauea 2018 eruption that, along with a comparison to the deltas formed at Pu‘u ‘Ō‘ō over the past decade, provide new insight into delta formation. Bathymetric differencing reveals that the 2018 deltas contain more than half of the total volume of lava erupted. In addition, we find that the 2018 deltas are comprised largely of coarse-grained volcanic breccias and intact lava flows, which contrast with those at Pu‘u ‘Ō‘ō that contain a large fraction of fine-grained hyaloclastite. We attribute this difference to less efficient fragmentation of the 2018 ‘a‘ā flows leading to fragmentation by collapse rather than hydrovolcanic explosion. We suggest a mechanistic model where the characteristic grain size influences the form and stability of the delta with fine grain size deltas (Pu‘u ‘Ō‘ō) experiencing larger landslides with greater run-out supported by increased pore pressure and with coarse grain size deltas (Kīlauea 2018) experiencing smaller landslides that quickly stop as the pore pressure rapidly dissipates. This difference, if validated for other lava deltas, would provide a means to assess potential delta stability in future eruptions.


Author(s):  
Shanshan Yu ◽  
Jicheng Zhang ◽  
Ju Liu ◽  
Xiaoqing Zhang ◽  
Yafeng Li ◽  
...  

AbstractIn order to solve the problem of distributed denial of service (DDoS) attack detection in software-defined network, we proposed a cooperative DDoS attack detection scheme based on entropy and ensemble learning. This method sets up a coarse-grained preliminary detection module based on entropy in the edge switch to monitor the network status in real time and report to the controller if any abnormality is found. Simultaneously, a fine-grained precise attack detection module is designed in the controller, and a ensemble learning-based algorithm is utilized to further identify abnormal traffic accurately. In this framework, the idle computing capability of edge switches is fully utilized with the design idea of edge computing to offload part of the detection task from the control plane to the data plane innovatively. Simulation results of two common DDoS attack methods, ICMP and SYN, show that the system can effectively detect DDoS attacks and greatly reduce the southbound communication overhead and the burden of the controller as well as the detection delay of the attacks.


Semantic Web ◽  
2020 ◽  
pp. 1-16
Author(s):  
Francesco Beretta

This paper addresses the issue of interoperability of data generated by historical research and heritage institutions in order to make them re-usable for new research agendas according to the FAIR principles. After introducing the symogih.org project’s ontology, it proposes a description of the essential aspects of the process of historical knowledge production. It then develops an epistemological and semantic analysis of conceptual data modelling applied to factual historical information, based on the foundational ontologies Constructive Descriptions and Situations and DOLCE, and discusses the reasons for adopting the CIDOC CRM as a core ontology for the field of historical research, but extending it with some relevant, missing high-level classes. Finally, it shows how collaborative data modelling carried out in the ontology management environment OntoME makes it possible to elaborate a communal fine-grained and adaptive ontology of the domain, provided an active research community engages in this process. With this in mind, the Data for history consortium was founded in 2017 and promotes the adoption of a shared conceptualization in the field of historical research.


Sign in / Sign up

Export Citation Format

Share Document