The Long Road to Understanding RNAPII Transcription Initiation and Related Syndromes

2021 ◽  
Vol 90 (1) ◽  
pp. 193-219
Author(s):  
Emmanuel Compe ◽  
Jean-Marc Egly

In eukaryotes, transcription of protein-coding genes requires the assembly at core promoters of a large preinitiation machinery containing RNA polymerase II (RNAPII) and general transcription factors (GTFs). Transcription is potentiated by regulatory elements called enhancers, which are recognized by specific DNA-binding transcription factors that recruit cofactors and convey, following chromatin remodeling, the activating cues to the preinitiation complex. This review summarizes nearly five decades of work on transcription initiation by describing the sequential recruitment of diverse molecular players including the GTFs, the Mediator complex, and DNA repair factors that support RNAPII to enable RNA synthesis. The elucidation of the transcription initiation mechanism has greatly benefited from the study of altered transcription components associated with human diseases that could be considered transcription syndromes.

PLoS Genetics ◽  
2021 ◽  
Vol 17 (9) ◽  
pp. e1009828
Author(s):  
Mohammad S. Baig ◽  
Yimo Dou ◽  
Benjamin G. Bergey ◽  
Russell Bahar ◽  
Justin M. Burgener ◽  
...  

Transcription-related proteins are frequently identified as targets of sumoylation, including multiple subunits of the RNA polymerase II (RNAPII) general transcription factors (GTFs). However, it is not known how sumoylation affects GTFs or whether they are sumoylated when they assemble at promoters to facilitate RNAPII recruitment and transcription initiation. To explore how sumoylation can regulate transcription genome-wide, we performed SUMO ChIP-seq in yeast and found, in agreement with others, that most chromatin-associated sumoylated proteins are detected at genes encoding tRNAs and ribosomal proteins (RPGs). However, we also detected 147 robust SUMO peaks at promoters of non-ribosomal protein-coding genes (non-RPGs), indicating that sumoylation also regulates this gene class. Importantly, SUMO peaks at non-RPGs align specifically with binding sites of GTFs, but not other promoter-associated proteins, indicating that it is GTFs specifically that are sumoylated there. Predominantly, non-RPGs with SUMO peaks are among the most highly transcribed, have high levels of TFIIF, and show reduced RNAPII levels when cellular sumoylation is impaired, linking sumoylation with elevated transcription. However, detection of promoter-associated SUMO by ChIP might be limited to sites with high levels of substrate GTFs, and promoter-associated sumoylation at non-RPGs may actually be far more widespread than we detected. Among GTFs, we found that TFIIF is a major target of sumoylation, specifically at lysines 60/61 of its Tfg1 subunit, and elevating Tfg1 sumoylation resulted in decreased interaction of TFIIF with RNAPII. Interestingly, both reducing promoter-associated sumoylation, in a sumoylation-deficient Tfg1-K60/61R mutant strain, and elevating promoter-associated SUMO levels, by constitutively tethering SUMO to Tfg1, resulted in reduced RNAPII occupancy at non-RPGs. This implies that dynamic GTF sumoylation at non-RPG promoters, not simply the presence or absence of SUMO, is important for maintaining elevated transcription. Together, our findings reveal a novel mechanism of regulating the basal transcription machinery through sumoylation of promoter-bound GTFs.


1999 ◽  
Vol 19 (3) ◽  
pp. 2130-2141 ◽  
Author(s):  
T. C. Kuhlman ◽  
H. Cho ◽  
D. Reinberg ◽  
N. Hernandez

ABSTRACT RNA polymerase II transcribes the mRNA-encoding genes and the majority of the small nuclear RNA (snRNA) genes. The formation of a minimal functional transcription initiation complex on a TATA-box-containing mRNA promoter has been well characterized and involves the ordered assembly of a number of general transcription factors (GTFs), all of which have been either cloned or purified to near homogeneity. In the human RNA polymerase II snRNA promoters, a single element, the proximal sequence element (PSE), is sufficient to direct basal levels of transcription in vitro. The PSE is recognized by the basal transcription complex SNAPc. SNAPc, which is not required for transcription from mRNA-type RNA polymerase II promoters such as the adenovirus type 2 major late (Ad2ML) promoter, is thought to recruit TATA binding protein (TBP) and nucleate the assembly of the snRNA transcription initiation complex, but little is known about which GTFs other than TBP are required. Here we show that the GTFs IIA, IIB, IIF, and IIE are required for efficient RNA polymerase II transcription from snRNA promoters. Thus, although the factors that recognize the core elements of RNA polymerase II mRNA and snRNA-type promoters differ, they mediate the recruitment of many common GTFs.


Author(s):  
Zhaolian Lu ◽  
Zhenguo Lin

ABSTRACTThe molecular process of transcription by RNA Polymerase II is highly conserved among eukaryotes (“classic model”). Intriguingly, a distinct way of locating transcription start sites (TSSs) was found in a budding yeast Saccharomyces cerevisiae (“scanning model”). The origin of the “scanning model” and its underlying genetic mechanisms remain unsolved. Herein, we applied genomic approaches to address these questions. We first identified TSSs at a single-nucleotide resolution for 12 yeast species using the nAnT-iCAGE technique, which significantly improved the annotations of these genomes by providing accurate 5’boundaries of protein-coding genes. We then infer the initiation mechanism of a species based on its TSS maps and genome sequences. We found that the “scanning model” had originated after the split of Yarrowia lipolytica and the rest of budding yeasts. An adenine-rich region immediately upstream of TSS had appeared during the evolution of the “scanning model” species, which might facilitate TSS selection in these species. Both initiation mechanisms share a strong preference for pyrimidine-purine dinucleotides surrounding the TSS. Our results suggested that the purine is required for accurately recruiting the first nucleotide, increasing the chance of being capped during mRNA maturation, which is critical for efficient translation initiation. Based on our findings, we proposed a model of TSS selection for the “scanning model” species. Besides, our study also demonstrated that the intrinsic sequence feature primarily determines the distribution of initiation activities within a core promoter (core promoter shape).


1996 ◽  
Vol 16 (5) ◽  
pp. 2110-2118 ◽  
Author(s):  
M L Martin ◽  
P M Lieberman ◽  
T Curran

The regulation of RNA polymerase II-mediated transcription involves both direct and indirect interactions among regulatory proteins and the general transcription factors (GTFs) that assemble at TATA-containing promoters. Here we show that the oncogenic transcription factors Fos and Jun make direct physical contacts with three proteins of the basal transcription apparatus, TFIIE-34 (TFIIE-beta), TFIIF-30 (RAP30), and TFIIF-74 (RAP74). The interactions among the activator proteins and these three GTFs were not detected with other transcription factors, including some bZIP protein family members. Both coimmunoprecipitation and protein blotting experiments demonstrated that the interactions were strongly favored by dimerization of Fos and Jun and that they involved the basic region and basic region-proximal domain of both proteins. Mutations within the DNA-binding domains of Fos and Jun abolished binding to GTFs, although the presence of DNA was not required for the association. Surprisingly, only a single basic region in the context of a protein dimer was sufficient for the interaction. Squelching of AP-1-dependent transcription in vitro by an excess of Fos-Jun dimers was relieved by the addition of TFIIE, indicating that it is a direct functional target of Fos and Jun. These results suggest that dimerization induces a conformational alteration in the basic region of Fos and Jun that promotes an association with TFIIE-34 and TFIIF, thus contributing to transcription initiation.


1998 ◽  
Vol 62 (2) ◽  
pp. 465-503 ◽  
Author(s):  
Michael Hampsey

SUMMARY Transcription initiation by RNA polymerase II (RNA pol II) requires interaction between cis-acting promoter elements and trans-acting factors. The eukaryotic promoter consists of core elements, which include the TATA box and other DNA sequences that define transcription start sites, and regulatory elements, which either enhance or repress transcription in a gene-specific manner. The core promoter is the site for assembly of the transcription preinitiation complex, which includes RNA pol II and the general transcription fctors TBP, TFIIB, TFIIE, TFIIF, and TFIIH. Regulatory elements bind gene-specific factors, which affect the rate of transcription by interacting, either directly or indirectly, with components of the general transcriptional machinery. A third class of transcription factors, termed coactivators, is not required for basal transcription in vitro but often mediates activation by a broad spectrum of activators. Accordingly, coactivators are neither gene-specific nor general transcription factors, although gene-specific coactivators have been described in metazoan systems. Transcriptional repressors include both gene-specific and general factors. Similar to coactivators, general transcriptional repressors affect the expression of a broad spectrum of genes yet do not repress all genes. General repressors either act through the core transcriptional machinery or are histone related and presumably affect chromatin function. This review focuses on the global effectors of RNA polymerase II transcription in yeast, including the general transcription factors, the coactivators, and the general repressors. Emphasis is placed on the role that yeast genetics has played in identifying these factors and their associated functions.


Science ◽  
2009 ◽  
Vol 327 (5962) ◽  
pp. 206-209 ◽  
Author(s):  
Xin Liu ◽  
David A. Bushnell ◽  
Dong Wang ◽  
Guillermo Calero ◽  
Roger D. Kornberg

Previous x-ray crystal structures have given insight into the mechanism of transcription and the role of general transcription factors in the initiation of the process. A structure of an RNA polymerase II–general transcription factor TFIIB complex at 4.5 angstrom resolution revealed the amino-terminal region of TFIIB, including a loop termed the “B finger,” reaching into the active center of the polymerase where it may interact with both DNA and RNA, but this structure showed little of the carboxyl-terminal region. A new crystal structure of the same complex at 3.8 angstrom resolution obtained under different solution conditions is complementary with the previous one, revealing the carboxyl-terminal region of TFIIB, located above the polymerase active center cleft, but showing none of the B finger. In the new structure, the linker between the amino- and carboxyl-terminal regions can also be seen, snaking down from above the cleft toward the active center. The two structures, taken together with others previously obtained, dispel long-standing mysteries of the transcription initiation process.


2020 ◽  
Vol 21 (8) ◽  
pp. 2733
Author(s):  
Lingjie Zhang ◽  
Changkui Guo

Developmental transitions in plants are tightly associated with changes in the transcriptional regulation of gene expression. One of the most important regulations is conferred by cofactors of RNA polymerase II including the mediator complex, a large complex with a modular organization. The mediator complex recruits transcription factors to bind to the specific sites of genes including protein-coding genes and non-coding RNA genes to promote or repress the transcription initiation and elongation using a protein-protein interaction module. Mediator complex subunits have been isolated and identified in plants and the function of most mediator subunits in whole life cycle plants have been revealed. Studies have shown that the Mediator complex is indispensable for the regulation of plant developmental transitions by recruiting age-, flowering-, or hormone-related transcription factors. Here, we first overviewed the Mediator subunits in plants, and then we summarized the specific Mediator subunits involved in developmental transitions, including vegetative phase change and floral transition. Finally, we proposed the future directions to further explore their roles in plants. The link between Mediator subunits and developmental transitions implies the necessity to explore targets of this complex as a potential application in developing high quality crop varieties.


2021 ◽  
Author(s):  
Srinivasan Rengachari ◽  
Sandra Schilbach ◽  
Shintaro Aibara ◽  
Christian Dienemann ◽  
Patrick Cramer

Mediator is a conserved coactivator that enables regulated transcription initiation from eukaryotic protein-coding genes1-3. Mediator is recruited by transcriptional activators and binds the pre-initiation complex (PIC) to stimulate RNA polymerase II (Pol II) phosphorylation and promoter escape1-6. Here we prepare a 20-subunit recombinant human Mediator, reconstitute a 50-subunit Mediator-PIC complex, and resolve the complex structure by cryo-EM at an overall resolution of 4.5 Å. Mediator binds with its head module to the Pol II stalk and the general transcription factors TFIIB and TFIIE, resembling the Mediator-PIC interactions in the corresponding yeast complex7-9. One end of Mediator contains the metazoan-specific subunits MED27-MED30, which associate with exposed regions in MED14 and MED17 to form the proximal part of the tail module that binds activators. The opposite end of Mediator positions the flexibly linked CDK-activating kinase (CAK) of the general transcription factor TFIIH near the C-terminal repeat domain (CTD) of Pol II. The Mediator shoulder domain holds the CAK subunit CDK7, whereas the hook domain contacts a CDK7 element that flanks the kinase active site. The shoulder and hook reside in the Mediator head and middle modules, respectively, which can move relative to each other and may induce an active conformation of CDK7 to allosterically stimulate CTD phosphorylation and Pol II escape from the promoter.


1999 ◽  
Vol 77 (4) ◽  
pp. 257-264 ◽  
Author(s):  
Benoit Coulombe

The DNA wrapping model of transcription stipulates that DNA bending and wrapping around RNA polymerase causes an unwinding of the DNA helix at the enzyme catalytic center that stimulates strand separation prior to initiation and during transcript elongation. Recent experiments with mammalian RNA polymerase II indicate the significance of DNA bending and wrapping in transcriptional mechanisms. These findings have important implications in our understanding of the role of the general transcription factors in transcriptional initiation and the mechanisms underlying transcriptional regulation.Key words: mRNA synthesis, transcription initiation, RNA polymerase II, DNA wrapping, general transcription factors.


2019 ◽  
Author(s):  
Wei Fang ◽  
Yi Wen ◽  
Xiangyun Wei

AbstractTissue-specific or cell type-specific transcription of protein-coding genes is controlled by both trans-regulatory elements (TREs) and cis-regulatory elements (CREs). However, it is challenging to identify TREs and CREs, which are unknown for most genes. Here, we describe a protocol for identifying two types of transcription-activating CREs—core promoters and enhancers—of zebrafish photoreceptor type-specific genes. This protocol is composed of three phases: bioinformatic prediction, experimental validation, and characterization of the CREs. To better illustrate the principles and logic of this protocol, we exemplify it with the discovery of the core promoter and enhancer of the mpp5b apical polarity gene (also known as ponli), whose red, green, and blue (RGB) cone-specific transcription requires its enhancer, a member of the rainbow enhancer family. While exemplified with an RGB cone-specific gene, this protocol is general and can be used to identify the core promoters and enhancers of other protein-coding genes.


Sign in / Sign up

Export Citation Format

Share Document