KCNQ Potassium Channels as Targets of Botanical Folk Medicines

Author(s):  
Kaitlyn E. Redford ◽  
Geoffrey W. Abbott

Since prehistory, human species have depended on plants for both food and medicine. Even in countries with ready access to modern medicines, alternative treatments are still highly regarded and commonly used. Unlike modern pharmaceuticals, many botanical medicines are in widespread use despite a lack of safety and efficacy data derived from controlled clinical trials and often unclear mechanisms of action. Contributing to this are the complex and undefined composition and likely multifactorial mechanisms of action and multiple targets of many botanical medicines. Here, we review the newfound importance of the ubiquitous KCNQ subfamily of voltage-gated potassium channels as targets for botanical medicines, including basil, capers, cilantro, lavender, fennel, chamomile, ginger, and Camellia, Sophora, and Mallotus species. We discuss the implications for the traditional use of these plants for disorders such as seizures, hypertension, and diabetes and the molecular mechanisms of plant secondary metabolite effects on KCNQ channels. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Author(s):  
Renee C. Geck ◽  
Gabriel Boyle ◽  
Clara J. Amorosi ◽  
Douglas M. Fowler ◽  
Maitreya J. Dunham

As costs of next-generation sequencing decrease, identification of genetic variants has far outpaced our ability to understand their functional consequences. This lack of understanding is a central challenge to a key promise of pharmacogenomics: using genetic information to guide drug selection and dosing. Recently developed multiplexed assays of variant effect enable experimental measurement of the function of thousands of variants simultaneously. Here, we describe multiplexed assays that have been performed on nearly 25,000 variants in eight key pharmacogenes ( ADRB2, CYP2C9, CYP2C19, NUDT15, SLCO1B1, TMPT, VKORC1, and the LDLR promoter), discuss advances in experimental design, and explore key challenges that must be overcome to maximize the utility of multiplexed functional data. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 50 (1) ◽  
Author(s):  
Lisa S. Fischer ◽  
Srishti Rangarajan ◽  
Tanmay Sadhanasatish ◽  
Carsten Grashoff

The ability of cells to generate mechanical forces, but also to sense, adapt to, and respond to mechanical signals, is crucial for many developmental, postnatal homeostatic, and pathophysiological processes. However, the molecular mechanisms underlying cellular mechanotransduction have remained elusive for many decades, as techniques to visualize and quantify molecular forces across individual proteins in cells were missing. The development of genetically encoded molecular tension sensors now allows the quantification of piconewton-scale forces that act upon distinct molecules in living cells and even whole organisms. In this review, we discuss the physical principles, advantages, and limitations of this increasingly popular method. By highlighting current examples from the literature, we demonstrate how molecular tension sensors can be utilized to obtain access to previously unappreciated biophysical parameters that define the propagation of mechanical forces on molecular scales. We discuss how the methodology can be further developed and provide a perspective on how the technique could be applied to uncover entirely novel aspects of mechanobiology in the future. Expected final online publication date for the Annual Review of Biophysics, Volume 50 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Lihe Chen ◽  
Hyun Jun Jung ◽  
Arnab Datta ◽  
Euijung Park ◽  
Brian G. Poll ◽  
...  

Systems biology can be defined as the study of a biological process in which all of the relevant components are investigated together in parallel to discover the mechanism. Although the approach is not new, it has come to the forefront as a result of genome sequencing projects completed in the first few years of the current century. It has elements of large-scale data acquisition (chiefly next-generation sequencing–based methods and protein mass spectrometry) and large-scale data analysis (big data integration and Bayesian modeling). Here we discuss these methodologies and show how they can be applied to understand the downstream effects of GPCR signaling, specifically looking at how the neurohypophyseal peptide hormone vasopressin, working through the V2 receptor and PKA activation, regulates the water channel aquaporin-2. The emerging picture provides a detailed framework for understanding the molecular mechanisms involved in water balance disorders, pointing the way to improved treatment of both polyuric disorders and water-retention disorders causing dilutional hyponatremia. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Benjamin Steinhorn ◽  
Emrah Eroglu ◽  
Thomas Michel

Chemogenetics refers to experimental systems that dynamically regulate the activity of a recombinant protein by providing or withholding the protein's specific biochemical stimulus. Chemogenetic tools permit precise dynamic control of specific signaling molecules to delineate the roles of those molecules in physiology and disease. Yeast d-amino acid oxidase (DAAO) enables chemogenetic manipulation of intracellular redox balance by generating hydrogen peroxide only in the presence of d-amino acids. Advances in biosensors have allowed the precise quantitation of these signaling molecules. The combination of chemogenetic approaches with biosensor methodologies has opened up new lines of investigation, allowing the analysis of intracellular redox pathways that modulate physiological and pathological cell responses. We anticipate that newly developed transgenic chemogenetic models will permit dynamic modulation of cellular redox balance in diverse cells and tissues and will facilitate the identification and validation of novel therapeutic targets involved in both physiological redox pathways and pathological oxidative stress. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 90 (1) ◽  
Author(s):  
Emilee E. Shine ◽  
Jason M. Crawford

The human microbiome encodes a second genome that dwarfs the genetic capacity of the host. Microbiota-derived small molecules can directly target human cells and their receptors or indirectly modulate host responses through functional interactions with other microbes in their ecological niche. Their biochemical complexity has profound implications for nutrition, immune system development, disease progression, and drug metabolism, as well as the variation in these processes that exists between individuals. While the species composition of the human microbiome has been deeply explored, detailed mechanistic studies linking specific microbial molecules to host phenotypes are still nascent. In this review, we discuss challenges in decoding these interaction networks, which require interdisciplinary approaches that combine chemical biology, microbiology, immunology, genetics, analytical chemistry, bioinformatics, and synthetic biology. We highlight important classes of microbiota-derived small molecules and notable examples. An understanding of these molecular mechanisms is central to realizing the potential of precision microbiome editing in health, disease, and therapeutic responses. Expected final online publication date for the Annual Review of Biochemistry, Volume 90 is June 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 84 (1) ◽  
Author(s):  
Ambre M. Bertholet ◽  
Yuriy Kirichok

Mitochondria of all tissues convert various metabolic substrates into two forms of energy: ATP and heat. Historically, the primary focus of research in mitochondrial bioenergetics was on the mechanisms of ATP production, while mitochondrial thermogenesis received significantly less attention. Nevertheless, mitochondrial heat production is crucial for the maintenance of body temperature, regulation of the pace of metabolism, and prevention of oxidative damage to mitochondria and the cell. In addition, mitochondrial thermogenesis has gained significance as a pharmacological target for treating metabolic disorders. Mitochondria produce heat as the result of H+ leak across their inner membrane. This review provides a critical assessment of the current field of mitochondrial H+ leak and thermogenesis, with a focus on the molecular mechanisms involved in the function and regulation of uncoupling protein 1 and the ADP/ATP carrier, the two proteins that mediate mitochondrial H+ leak. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 84 (1) ◽  
Author(s):  
Geneviève Marcelin ◽  
Emmanuel L. Gautier ◽  
Karine Clément

Obesity is a chronic and progressive process affecting whole-body energy balance and is associated with comorbidities development. In addition to increased fat mass, obesity induces white adipose tissue (WAT) inflammation and fibrosis, leading to local and systemic metabolic dysfunctions, such as insulin resistance (IR). Accordingly, limiting inflammation or fibrosis deposition may improve IR and glucose homeostasis. Although no targeted therapy yet exists to slow or reverse adipose tissue fibrosis, a number of findings have clarified the underlying cellular and molecular mechanisms. In this review, we highlight adipose tissue remodeling events shown to be associated with fibrosis deposition, with a focus on adipose progenitors involved in obesity-induced healthy as well as unhealthy WAT expansion. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2022 ◽  
Vol 45 (1) ◽  
Author(s):  
Max Koppers ◽  
Christine E. Holt

Axons receive extracellular signals that help to guide growth and synapse formation during development and to maintain neuronal function and survival during maturity. These signals relay information via cell surface receptors that can initiate local intracellular signaling at the site of binding, including local messenger RNA (mRNA) translation. Direct coupling of translational machinery to receptors provides an attractive way to activate this local mRNA translation and change the local proteome with high spatiotemporal resolution. Here, we first discuss the increasing evidence that different external stimuli trigger translation of specific subsets of mRNAs in axons via receptors and thus play a prominent role in various processes in both developing and mature neurons. We then discuss the receptor-mediated molecular mechanisms that regulate local mRNA translational with a focus on direct receptor-ribosome coupling. We advance the idea that receptor-ribosome coupling provides several advantages over other translational regulation mechanisms and is a common mechanism in cell communication. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Richard E. Lloyd ◽  
Manasi Tamhankar ◽  
Åke Lernmark

Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by insulin deficiency and resultant hyperglycemia. Complex interactions of genetic and environmental factors trigger the onset of autoimmune mechanisms responsible for development of autoimmunity to β cell antigens and subsequent development of T1D. A potential role of virus infections has long been hypothesized, and growing evidence continues to implicate enteroviruses as the most probable triggering viruses. Recent studies have strengthened the association between enteroviruses and development of autoimmunity in T1D patients, potentially through persistent infections. Enterovirus infections may contribute to different stages of disease development. We review data from both human cohort studies and experimental research exploring the potential roles and molecular mechanisms by which enterovirus infections can impact disease outcome. Expected final online publication date for the Annual Review of Medicine, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Annette C. Dolphin ◽  
Paul A. Insel ◽  
Terrence F. Blaschke ◽  
Urs A. Meyer

“Ion Channels and Neuropharmacology: From the Past to the Future” is the main theme of articles in Volume 60 of the Annual Review of Pharmacology and Toxicology. Reviews in this volume discuss a wide spectrum of therapeutically relevant ion channels and GPCRs with a particular emphasis on structural studies that elucidate drug binding sites and mechanisms of action. The regulation of ion channels by second messengers, including Ca2+ and cyclic AMP, and lipid mediators is also highly relevant to several of the ion channels discussed, including KCNQ channels, HCN channels, L-type Ca2+ channels, and AMPA receptors, as well as the aquaporin channels. Molecular identification of exactly where drugs bind in the structure not only elucidates their mechanism of action but also aids future structure-based drug discovery efforts to focus on relevant pharmacophores. The ion channels discussed here are targets for multiple nervous system diseases, including epilepsy and neuropathic pain. This theme complements several previous themes, including “New Therapeutic Targets,” “New Approaches for Studying Drug and Toxicant Action: Applications to Drug Discovery and Development,” and “New Methods and Novel Therapeutic Approaches in Pharmacology and Toxicology.”


Sign in / Sign up

Export Citation Format

Share Document