A New Old Target: Androgen Receptor Signaling and Advanced Prostate Cancer

Author(s):  
Daniel Westaby ◽  
Maria de Los Dolores Fenor de La Maza ◽  
Alec Paschalis ◽  
Juan M. Jimenez-Vacas ◽  
Jon Welti ◽  
...  

Owing to the development of multiple novel therapies, there has been major progress in the treatment of advanced prostate cancer over the last two decades; however, the disease remains invariably fatal. Androgens and the androgen receptor (AR) play a critical role in prostate carcinogenesis, and targeting the AR signaling axis with abiraterone, enzalutamide, darolutamide, and apalutamide has improved outcomes for men with this lethal disease. Targeting the AR and elucidating mechanisms of resistance to these agents remains central to drug development efforts. This review provides an overview of the evolution and current approaches for targeting the AR in advanced prostate cancer. It describes the biology of AR signaling, explores AR-targeting resistance mechanisms, and discusses future perspectives and promising novel therapeutic strategies. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

2016 ◽  
Vol 23 (12) ◽  
pp. T179-T197 ◽  
Author(s):  
Isabel Coutinho ◽  
Tanya K Day ◽  
Wayne D Tilley ◽  
Luke A Selth

The androgen receptor (AR) signaling axis drives all stages of prostate cancer, including the lethal, drug-resistant form of the disease termed castration-resistant prostate cancer (CRPC), which arises after failure of androgen deprivation therapy (ADT). Persistent AR activity in spite of ADT and the second-generation AR-targeting agents enzalutamide and abiraterone is achieved in many cases by direct alterations to the AR signaling axis. Herein, we provide a detailed description of how such alterations contribute to the development and progression of CRPC. Aspects of this broad and ever-evolving field specifically addressed in this review include: the etiology and significance of increased AR expression; the frequency and role of gain-of-function mutations in theARgene; the function of constitutively active, truncated forms of the AR termed AR variants and the clinical relevance of alterations to the activity and expression of AR coregulators. Additionally, we examine the novel therapeutic strategies to inhibit these classes of therapy resistance mechanisms, with an emphasis on emerging agents that act in a manner distinct from the current ligand-centric approaches. Throughout, we discuss how the central role of AR in prostate cancer and the constant evolution of the AR signaling axis during disease progression represent archetypes of two key concepts in oncology, oncogene addiction and therapy-mediated selection pressure.


2019 ◽  
Vol 20 (9) ◽  
pp. 2066 ◽  
Author(s):  
Namrata Khurana ◽  
Suresh C. Sikka

Androgen receptor (AR) signaling plays a key role not only in the initiation of prostate cancer (PCa) but also in its transition to aggressive and invasive castration-resistant prostate cancer (CRPC). However, the crosstalk of AR with other signaling pathways contributes significantly to the emergence and growth of CRPC. Wnt/β-catenin signaling facilitates ductal morphogenesis in fetal prostate and its anomalous expression has been linked with PCa. β-catenin has also been reported to form complex with AR and thus augment AR signaling in PCa. The transcription factor SOX9 has been shown to be the driving force of aggressive and invasive PCa cells and regulate AR expression in PCa cells. Furthermore, SOX9 has also been shown to propel PCa by the reactivation of Wnt/β-catenin signaling. In this review, we discuss the critical role of SOX9/AR/Wnt/β-catenin signaling axis in the development and progression of CRPC. The phytochemicals like sulforaphane and curcumin that can concurrently target SOX9, AR and Wnt/β-catenin signaling pathways in PCa may thus be beneficial in the chemoprevention of PCa.


Oncogene ◽  
2021 ◽  
Author(s):  
Nicolò Formaggio ◽  
Mark A. Rubin ◽  
Jean-Philippe Theurillat

AbstractTargeting the androgen receptor (AR) signaling axis has been, over decades, the mainstay of prostate cancer therapy. More potent inhibitors of androgen synthesis and antiandrogens have emerged and have been successfully implemented in clinical practice. That said, the stronger inhibition of the AR signaling axis has led in recent years to an increase of prostate cancers that de-differentiate into AR-negative disease. Unfortunately, this process is intimately linked with a poor prognosis. Here, we review the molecular mechanisms that enable cancer cells to switch from an AR-positive to an AR-negative disease and efforts to prevent/revert this process and thereby maintain/restore AR-dependence.


2021 ◽  
Vol 39 (6_suppl) ◽  
pp. 25-25
Author(s):  
Hanna Tukachinsky ◽  
Russell Madison ◽  
Jon Chung ◽  
Lucas Dennis ◽  
Bernard Fendler ◽  
...  

25 Background: Comprehensive genomic profiling (CGP) by next-generation sequencing (NGS) of circulating tumor DNA (ctDNA) from plasma provides a minimally invasive method to identify targetable genomic alterations (GAs) and resistance mechanisms in patients with metastatic castration-resistant prostate cancer (mCRPC). The circulating tumor fraction in patients with mCRPC and the clinical validity of GAs detected in plasma remain unknown. We evaluated the landscape of GAs using ctDNA-based CGP and assessed concordance with tissue-based CGP. Methods: Plasma from 3,334 patients with advanced prostate cancer (including 1,674 mCRPC screening samples from the TRITON2/3 trials and 1,660 samples from routine clinical CGP) was analyzed using hybrid-capture-based gene panel NGS assays. Results were compared with CGP of 2,006 metastatic prostate cancer tissue biopsies. Concordance was evaluated in 837 patients with both tissue (archival or contemporaneous) and plasma NGS results. Results: 3,127 patients [94%] had detectable ctDNA. BRCA1/2 were mutated in 295 patients [8.8%]. In concordance analysis, 72/837 [8.6%] patients had BRCA1/2 mutations detected in tissue, 67 [93%] of whom were also identified by ctDNA, and 20 patients were identified using ctDNA but not tissue [23% of all patients identified using ctDNA]. ctDNA detected subclonal BRCA1/2 reversions in 10 of 1,660 [0.6%] routine clinical CGP samples. AR alterations, including amplifications and hotspot mutations, which were detected in 940/2,213 patients [42%]. Rare AR compound mutations, rearrangements, and novel in-frame deletions were identified. Altered pathways included PI3K/AKT/mTOR [14%], WNT/β-catenin [17%], and RAS/RAF/MEK [5%]. Microsatellite instability was detected in 31/2,213 patients [1.4%]. Conclusions: In the largest study of mCRPC plasma samples conducted to date, CGP of ctDNA recapitulated the genomic landscape detected in tissue biopsies, with a high level of agreement in detection of BRCA1/2 alterations. It also identified patients who may have gained somatic BRCA1/2 alterations since archival tissue was collected. ctDNA detected more acquired resistance GAs than tissue, including novel AR-activating variants. The large percentage of patients with rich genomic signal from ctDNA, and the sensitive, specific detection of BRCA1/2 alterations position liquid biopsy as a compelling clinical complement to tissue CGP for patients with mCRPC.


2021 ◽  
Vol 44 (1) ◽  
Author(s):  
Masaki Isoda

As a frontal node in the primate social brain, the medial prefrontal cortex (MPFC) plays a critical role in coordinating one's own behavior with respect to that of others. Current literature demonstrates that single neurons in the MPFC encode behavior-related variables such as intentions, actions, and rewards, specifically for self and other, and that the MPFC comes into play when reflecting upon oneself and others. The social moderator account of MPFC function can explain maladaptive social cognition in people with autism spectrum disorder, which tips the balance in favor of self-centered perspectives rather than taking into consideration the perspective of others. Several strands of evidence suggest a hypothesis that the MPFC represents different other mental models, depending on the context at hand, to better predict others’ emotions and behaviors. This hypothesis also accounts for aberrant MPFC activity in autistic individuals while they are mentalizing others. Expected final online publication date for the Annual Review of Neuroscience, Volume 44 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Lucie Larigot ◽  
Louise Benoit ◽  
Meriem Koual ◽  
Céline Tomkiewicz ◽  
Robert Barouki ◽  
...  

The aryl hydrocarbon receptor (AhR) is a transcriptional factor that regulates multiple functions following its activation by a variety of ligands, including xenobiotics, natural products, microbiome metabolites, and endogenous molecules. Because of this diversity, the AhR constitutes an exposome receptor. One of its main functions is to regulate several lines of defense against chemical insults and bacterial infections. Indeed, in addition to its well-established detoxication function, it has several functions at physiological barriers, and it plays a critical role in immunomodulation. The AhR is also involved in the development of several organs and their homeostatic maintenance. Its activity depends on the type of ligand and on the time frame of the receptor activation, which can be either sustained or transient, leading in some cases to opposite modes of regulations as illustrated in the regulation of different cancer pathways. The development of selective modulators and their pharmacological characterization are important areas of research. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Cell ◽  
2018 ◽  
Vol 174 (2) ◽  
pp. 422-432.e13 ◽  
Author(s):  
David Y. Takeda ◽  
Sándor Spisák ◽  
Ji-Heui Seo ◽  
Connor Bell ◽  
Edward O’Connor ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document