Eye Movements in Macular Degeneration

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Preeti Verghese ◽  
Cécile Vullings ◽  
Natela Shanidze

In healthy vision, the fovea provides high acuity and serves as the locus for fixation achieved through saccadic eye movements. Bilateral loss of the foveal regions in both eyes causes individuals to adopt an eccentric locus for fixation. This review deals with the eye movement consequences of the loss of the foveal oculomotor reference and the ability of individuals to use an eccentric fixation locus as the new oculomotor reference. Eye movements are an integral part of everyday activities, such as reading, searching for an item of interest, eye–hand coordination, navigation, or tracking an approaching car. We consider how these tasks are impacted by the need to use an eccentric locus for fixation and as a reference for eye movements, specifically saccadic and smooth pursuit eye movements. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Laura Campello ◽  
Nivedita Singh ◽  
Jayshree Advani ◽  
Anupam K. Mondal ◽  
Ximena Corso-Diaz ◽  
...  

Multifaceted and divergent manifestations across tissues and cell types have curtailed advances in deciphering the cellular events that accompany advanced age and contribute to morbidities and mortalities. Increase in human lifespan during the past century has heightened awareness of the need to prevent age-associated frailty of neuronal and sensory systems to allow a healthy and productive life. In this review, we discuss molecular and physiological attributes of aging of the retina, with a goal of understanding age-related impairment of visual function. We highlight the epigenome–metabolism nexus and proteostasis as key contributors to retinal aging and discuss lifestyle changes as potential modulators of retinal function. Finally, we deliberate promising intervention strategies for promoting healthy aging of the retina for improved vision. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2004 ◽  
Vol 91 (2) ◽  
pp. 591-603 ◽  
Author(s):  
Richard J. Krauzlis

Primates use a combination of smooth pursuit and saccadic eye movements to stabilize the retinal image of selected objects within the high-acuity region near the fovea. Pursuit has traditionally been viewed as a relatively automatic behavior, driven by visual motion signals and mediated by pathways that connect visual areas in the cerebral cortex to motor regions in the cerebellum. However, recent findings indicate that this view needs to be reconsidered. Rather than being controlled primarily by areas in extrastriate cortex specialized for processing visual motion, pursuit involves an extended network of cortical areas, and, of these, the pursuit-related region in the frontal eye fields appears to exert the most direct influence. The traditional pathways through the cerebellum are important, but there are also newly identified routes involving structures previously associated with the control of saccades, including the basal ganglia, the superior colliculus, and nuclei in the brain stem reticular formation. These recent findings suggest that the pursuit system has a functional architecture very similar to that of the saccadic system. This viewpoint provides a new perspective on the processing steps that occur as descending control signals interact with circuits in the brain stem and cerebellum responsible for gating and executing voluntary eye movements. Although the traditional view describes pursuit and saccades as two distinct neural systems, it may be more accurate to consider the two movements as different outcomes from a shared cascade of sensory–motor functions.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Maureen G. Maguire

Clinical trials for conditions affecting the visual system need to not only conform to the guidelines for all clinical trials, but also accommodate the possibility of both eyes of a single patient qualifying for the trial. In this review, I present the interplay of the key components in the design of a clinical trial, along with the modifications or options that may be available for trials addressing ocular conditions. Examples drawn from published reports of the design and results of clinical trials of ocular conditions are provided to illustrate application of the design principles. Current approaches to data analysis and reporting of trials are outlined, and the oversight and regulatory procedures to protect participants in clinical trials are discussed. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ken Nakayama

With Professor Patrick Cavanagh, I started the Harvard Vision Sciences Laboratory in 1990. Blessed with the largesse of a wealthy university, we occupied a very large common space. Here, students pursued their own projects in a uniquely cooperative and exciting scientific environment. The times were just right in the emerging and expanding field of vision science. With good thesis projects under their belt, most of the students went on to successful careers. However, my own coming of age in science did not have such promising start. It only started well into my thirties when I joined the Smith Kettlewell Eye Research Institute in San Francisco. Providentially, it was there that I had the rare and unique opportunity to work closely and essentially only with peers (not students). Through these intense collaborations, I found my way as a scientist. Most of this account describes these formative years. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jason D. Yeatman ◽  
Alex L. White

The scientific study of reading has a rich history that spans disciplines from vision science to linguistics, psychology, cognitive neuroscience, neurology, and education. The study of reading can elucidate important general mechanisms in spatial vision, attentional control, object recognition, and perceptual learning, as well as the principles of plasticity and cortical topography. However, literacy also prompts the development of specific neural circuits to process a unique and artificial stimulus. In this review, we describe the sequence of operations that transforms visual features into language, how the key neural circuits are sculpted by experience during development, and what goes awry in children for whom learning to read is a struggle. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
John T. Wixted ◽  
Edward Vul ◽  
Laura Mickes ◽  
Brent M. Wilson

The simultaneous six-pack photo lineup is a standard eyewitness identification procedure, consisting of one police suspect plus five physically similar fillers. The photo lineup is either a target-present array (the suspect is guilty) or a target-absent array (the suspect is innocent). The eyewitness is asked to search the six photos in the array with respect to a target template stored in memory (namely, the memory of the perpetrator's face). If the witness determines that the perpetrator is in fact in the lineup (detection), then the next step is to specify the position of the perpetrator's face in the lineup (localization). The witness may also determine that the perpetrator is not present and reject the lineup. In other words, a police lineup is a detection-plus-localization visual search task. Signal detection concepts that have long guided thinking about visual search have recently had a significant impact on our understanding of police lineups. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Karthik Shekhar ◽  
Joshua R. Sanes

It has been known for over a century that the basic organization of the retina is conserved across vertebrates. It has been equally clear that retinal cells can be classified into numerous types, but only recently have methods been devised to explore this diversity in unbiased, scalable, and comprehensive ways. Advances in high-throughput single-cell RNA-sequencing (scRNA-seq) have played a pivotal role in this effort. In this article, we outline the experimental and computational components of scRNA-seq and review studies that have used them to generate retinal atlases of cell types in several vertebrate species. These atlases have enabled studies of retinal development, responses of retinal cells to injury, expression patterns of genes implicated in retinal disease, and the evolution of cell types. Recently, the inquiry has expanded to include the entire eye and visual centers in the brain. These studies have enhanced our understanding of retinal function and dysfunction and provided tools and insights for exploring neural diversity throughout the brain. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


1984 ◽  
Vol 59 (1) ◽  
pp. 91-100 ◽  
Author(s):  
J. L. Black ◽  
D. W. K. Collins ◽  
J. N. De Roach ◽  
S. R. Zubrick

This paper describes a detailed study of horizontal eye movements associated with visual tracking of a smoothly moving target. Essentially all children, even at target velocities as low as 5°/sec., show some saccadic eye movements superimposed on smooth tracking movements. Detailed analysis of pursuit eye-movements from a group of 26 poor readers and 34 normal controls (8 to 13 yr.) showed that about 25% of poor readers have an abnormally raised saccadic component in smooth pursuit. This suggests that studies of eye movements during tracking of smoothly moving targets at low velocity, combined with a quantitative approach to data analysis, may be useful for early detection of a significant proportion of poor-reading children.


2013 ◽  
Vol 110 (2) ◽  
pp. 358-367 ◽  
Author(s):  
Caroline Ego ◽  
Jean-Jacques Orban de Xivry ◽  
Marie-Cécile Nassogne ◽  
Demet Yüksel ◽  
Philippe Lefèvre

Motor skills improve with age from childhood into adulthood, and this improvement is reflected in the performance of smooth pursuit eye movements. In contrast, the saccadic system becomes mature earlier than the smooth pursuit system. Therefore, the present study investigates whether the early mature saccadic system compensates for the lower pursuit performance during childhood. To answer this question, horizontal eye movements were recorded in 58 children (ages 5–16 yr) and 16 adults (ages 23–36 yr) in a task that required the combination of smooth pursuit and saccadic eye movements. Smooth pursuit performance improved with age. However, children had larger average position error during target tracking compared with adults, but they did not execute more saccades to compensate for their low pursuit performance despite the early maturity of their saccadic system. This absence of error correction suggests that children have a lower sensitivity to visual errors compared with adults. This reduced sensitivity might stem from poor internal models and longer processing time in young children.


Sign in / Sign up

Export Citation Format

Share Document