SPIN-DEPENDENT TRANSPORT AND LOW-FIELD MAGNETORESISTANCE IN DOPED MANGANITES

1998 ◽  
Vol 28 (1) ◽  
pp. 45-78 ◽  
Author(s):  
J. Z. Sun ◽  
A. Gupta
2016 ◽  
Vol 30 (23) ◽  
pp. 1650301
Author(s):  
Chunlong Xu ◽  
Zhen Wang ◽  
Lei Wang ◽  
Gang Shi ◽  
Zhaoyang Hou ◽  
...  

Spin-dependent transport properties of Fe3O4 spheres with diameters from 200 nm to 900 nm have been investigated and polyethylene glycol (PEG) exists on the surface of Fe3O4 particles. The nonlinear I–V curve became obvious with the increase of Fe3O4 diameter, which indicated the tunneling barrier height decreases with the increasing diameter. The magnetoresistance (MR) can reach −13% with an applied low field of 0.2 T at room temperature. With the diameter increase, the MR decreases and the required applied field increases. Moreover, the decrease of MR with the bias voltage increase can be attributed to the spin-dependent tunneling effect through the insulating surface layer of Fe3O4 and PEG.


2011 ◽  
Vol 675-677 ◽  
pp. 1105-1108
Author(s):  
Bao Xin Huang ◽  
Jun Hua Wang ◽  
Zhen Hua Wang ◽  
Ke Zheng Chen ◽  
Yi Hua Liu ◽  
...  

The magnetic and electrical properties of La0.67Sr0.33MnO3 ( LSMO ) are influenced very much by the Nb dopant. However, this doping effect is restricted by the limited Nb solution into LSMO due to the low calcined temperature. As a result, a second phase LaNbO4 appears in our samples. Enhancements of the low-field magnetoresistance (LFMR) were observed both at 77 K and room temperature in the manganite system prepared by doping Nb2O5 into LSMO powders. The doping amount x of Nb ions ranges from 0-10 % molar ratio. The MR ratios at 77 K with H = 1 T and H = 0.1 T are 33.8 % and 24 % for the x = 0.07 doped sample, respectively. A MR effect up to 9 % was also found for the sample with x = 0.05 at room temperature, which is 2.2 times as large as that for LSMO (4.1%). The spin dependent tunneling and scattering at the interfaces of the grain boundaries are responsible for the LFMR while the high field magnetoresistance (HFMR) originates from the spin dependent transport related to noncollinear spin structure at the interfaces.


1997 ◽  
Vol 467 ◽  
Author(s):  
Martin Stutzmann

ABSTRACTThe microscopic origin and the creation mechanisms of metastable, light-induced defects in hydrogenated amorphous silicon are reviewed. Based on excitonic electron-hole pair recombination, a consistent quantitative description of defect creation kinetics can be obtained, including the experimentally observed differences between continuous wave and pulsed illumination as well as the effect of competing recombination pathways in compensated material. High resolution spin resonance spectra obtained by low-field spin-dependent transport are used to examine the interaction of metastable defects with hydrogen.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yun Li ◽  
Xiaobo Li ◽  
Shidong Zhang ◽  
Liemao Cao ◽  
Fangping Ouyang ◽  
...  

AbstractStrain engineering has become one of the effective methods to tune the electronic structures of materials, which can be introduced into the molecular junction to induce some unique physical effects. The various γ-graphyne nanoribbons (γ-GYNRs) embedded between gold (Au) electrodes with strain controlling have been designed, involving the calculation of the spin-dependent transport properties by employing the density functional theory. Our calculated results exhibit that the presence of strain has a great effect on transport properties of molecular junctions, which can obviously enhance the coupling between the γ-GYNR and Au electrodes. We find that the current flowing through the strained nanojunction is larger than that of the unstrained one. What is more, the length and strained shape of the γ-GYNR serves as the important factors which affect the transport properties of molecular junctions. Simultaneously, the phenomenon of spin-splitting occurs after introducing strain into nanojunction, implying that strain engineering may be a new means to regulate the electron spin. Our work can provide theoretical basis for designing of high performance graphyne-based devices in the future.


2004 ◽  
Vol 16 (8) ◽  
pp. 1447-1453 ◽  
Author(s):  
Guotai Tan ◽  
Ping Duan ◽  
Guang Yang ◽  
Shouyu Dai ◽  
Bolin Cheng ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yipeng An ◽  
Kun Wang ◽  
Shijing Gong ◽  
Yusheng Hou ◽  
Chunlan Ma ◽  
...  

AbstractTwo-dimensional (2D) magnetic materials are essential for the development of the next-generation spintronic technologies. Recently, layered van der Waals (vdW) compound MnBi2Te4 (MBT) has attracted great interest, and its 2D structure has been reported to host coexisting magnetism and topology. Here, we design several conceptual nanodevices based on MBT monolayer (MBT-ML) and reveal their spin-dependent transport properties by means of the first-principles calculations. The pn-junction diodes and sub-3-nm pin-junction field-effect transistors (FETs) show a strong rectifying effect and a spin filtering effect, with an ideality factor n close to 1 even at a reasonably high temperature. In addition, the pip- and nin-junction FETs give an interesting negative differential resistive (NDR) effect. The gate voltages can tune currents through these FETs in a large range. Furthermore, the MBT-ML has a strong response to light. Our results uncover the multifunctional nature of MBT-ML, pave the road for its applications in diverse next-generation semiconductor spin electric devices.


2020 ◽  
Vol 126 (7) ◽  
Author(s):  
Qian Liu ◽  
Yaqiang Tian ◽  
Xiaoping Zheng ◽  
Liansheng Chen ◽  
Yuqing Zhao ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (46) ◽  
pp. 40155-40161 ◽  
Author(s):  
Wei Wang ◽  
Yan-Dong Guo ◽  
Xiao-Hong Yan

Two-probe systems of transition metal atom (X)-encapsulated B40fullerene contacted with Au electrodes, where X = Fe, Mn, Ni, and Co.


Sign in / Sign up

Export Citation Format

Share Document