Numerical Analysis on the Heat Transfer of Heatsink with Micro-Pin-Fins

2013 ◽  
Vol 52 (1) ◽  
pp. 759-764 ◽  
Author(s):  
H.-C. Chiu ◽  
R.-H. Hsieh ◽  
J.-H. Jang
2016 ◽  
Vol 138 (11) ◽  
Author(s):  
Robin Brakmann ◽  
Lingling Chen ◽  
Bernhard Weigand ◽  
Michael Crawford

A generic impingement cooling system for turbomachinery application is modeled experimentally and numerically to investigate heat transfer and pressure loss characteristics. The experimental setup consists of an array of 9 × 9 jets impinging on a target plate with cubic micro pin fins. The cubic micro pin fins have an edge length of 0.22 D and enlarge the target area by 150%. Experimentally heat transfer is measured by the transient liquid crystal (TLC) method. The transient method used requires a heated jet impinging on a cold target plate. As reference temperature for the heat transfer coefficient, we use the total jet inlet temperature which is measured via thermocouples in the jet center. The computational fluid dynamics (CFD) model was realized within the software package ANSYS CFX. This model uses a Steady-state 3D Reynolds-averaged Navier–Stokes (RANS) approach and the shear stress transport (SST) turbulence model. Boundary conditions are chosen to mimic the experiments as close as possible. The effects of different jet-to-plate spacing (H/D = 3–5), crossflow schemes, and jet Reynolds number (15,000–35,000) are investigated experimentally and numerically. The results include local Nusselt numbers as well as area and line averaged values. Numerical simulations allow a detailed insight into the fluid mechanics of the problem and complement experimental measurements. A good overall agreement of experimental and numerical behavior for all investigated cases could be reached. Depending on the crossflow scheme, the cubic micro pin fin setup increases the heat flux to about 134–142% compared to a flat target plate. At the same time, the Nusselt number slightly decreases. The micro pin fins increase the pressure loss by not more than 14%. The results show that the numerical model predicts the heat transfer characteristics of the cubic micro pin fins in a satisfactory way.


1999 ◽  
Vol 121 (4) ◽  
pp. 972-977 ◽  
Author(s):  
F.-C. Chou ◽  
J. R. Lukes ◽  
C.-L. Tien

The current literature contains many studies of microchannel and micro-pin-fin heat exchangers, but none of them consider the size effect on the thermal conductivity of channel and fin walls. The present study analyzes the effect of size (i.e., the microscale effect) on the microfin performance, particularly in the cryogenic regime where the microscale effect is often appreciable. The size effect reduces the thermal conductivity of microchannel and microfin walls and thus reduces the heat transfer rate. For this reason, heat transfer enhancement by microfins becomes even more important than for macroscale fins. The need for better understanding of heat transfer enhancement by microfins motivates the current study, which resolves three basic issues. First, it is found that the heat, flow choking can occur even in the case of simple plate fins or pin fins in the microscale regime, although choking is usually caused by the accommodation of a cluster of fins at the fin tip. Second, this paper shows that the use of micro-plate-fin arrays yields a higher heat transfer enhancement ratio than the use of the micro-pin-fin arrays due to the stronger reduction of thermal conductivity in micro-pin-fins. The third issue is how the size effect influences the fin thickness optimization. For convenience in design applications, an equation for the optimum fin thickness is established which generalizes the case without the size effect as first reported by Tuckerman and Pease.


Author(s):  
Ali Kosar ◽  
Yoav Peles

An experimental study has been performed on single-phase heat transfer of de-ionized water over a bank of shrouded micro pin fins 243-μm long with hydraulic diameter of 99.5-μm. Heat transfer coefficients and Nusselt numbers have been obtained over effective heat fluxes ranging from 3.8 to 167 W/cm2 and Reynolds numbers from 14 to 112. The results were used to derive the Nusselt numbers and total thermal resistances. It has been found that endwalls effects are significant at low Reynolds numbers and diminish at higher Reynolds numbers.


Sign in / Sign up

Export Citation Format

Share Document