scholarly journals Role of Chloride Ions in Suppression of Copper Electrodeposition by Polyethylene Glycol

2005 ◽  
Vol 152 (5) ◽  
pp. C283 ◽  
Author(s):  
Kurt R. Hebert
2006 ◽  
Vol 72 (1) ◽  
pp. 28-36 ◽  
Author(s):  
A. D'Annibale ◽  
F. Rosetto ◽  
V. Leonardi ◽  
F. Federici ◽  
M. Petruccioli

ABSTRACT Nine fungal strains isolated from an aged and heavily contaminated soil were identified and screened to assess their degradative potential. Among them, Allescheriella sp. strain DABAC 1, Stachybotrys sp. strain DABAC 3, and Phlebia sp. strain DABAC 9 were selected for remediation trials on the basis of Poly R-478 decolorization associated with lignin-modifying enzyme (LME) production. These autochthonous fungi were tested for the abilities to grow under nonsterile conditions and to degrade various aromatic hydrocarbons in the same contaminated soil. After 30 days, fungal colonization was clearly visible and was confirmed by ergosterol determination. In spite of subalkaline pH conditions and the presence of heavy metals, the autochthonous fungi produced laccase and Mn and lignin peroxidases. No LME activities were detected in control microcosms. All of the isolates led to a marked removal of naphthalene, dichloroaniline isomers, o-hydroxybiphenyl, and 1,1′-binaphthalene. Stachybotrys sp. strain DABAC 3 was the most effective isolate due to its ability to partially deplete the predominant contaminants 9,10-anthracenedione and 7H-benz[DE]anthracen-7-one. A release of chloride ions was observed in soil treated with either Allescheriella sp. strain DABAC 1 or Stachybotrys sp. strain DABAC 3, suggesting the occurrence of oxidative dehalogenation. The autochthonous fungi led to a significant decrease in soil toxicity, as assessed by both the Lepidium sativum L. germination test and the Collembola mortality test.


Nano Letters ◽  
2009 ◽  
Vol 9 (2) ◽  
pp. 751-757 ◽  
Author(s):  
Reema Zeineldin ◽  
Marwan Al-Haik ◽  
Laurie G. Hudson

2021 ◽  
Author(s):  
Tudor Vasiliu ◽  
Bogdan Florin Florin Craciun ◽  
Andrei Neamtu ◽  
Lilia Clima ◽  
Dragos Lucian Isac ◽  
...  

The biocompatible hydrophilic polyethylene glycol (PEG) is widely used in biomedical applications, such as drug or gene delivery, tissue engineering or as antifouling in biomedical devices. Experimental studies have shown...


2021 ◽  
Author(s):  
Kanae Tsubotani ◽  
Sayuri Maeyama ◽  
Shigeru Murakami ◽  
Stephen W Schaffer ◽  
Takashi Ito

AbstractTaurine is a compatible osmolyte that infers stability to proteins. Recent studies have revealed that liquid-liquid phase separation (LLPS) of proteins underlie the formation of membraneless organelles in cells. In the present study, we evaluated the role of taurine on LLPS of hen egg lysozyme. We demonstrated that taurine decreases the turbidity of the polyethylene glycol-induced crowding solution of lysozyme. We also demonstrated that taurine attenuates LLPS-dependent cloudiness of lysozyme solution with 0.5 or 1M NaCl at a critical temperature. Moreover, we observed that taurine inhibits LLPS formation of a heteroprotein mix solution of lysozyme and ovalbumin. These data indicate that taurine can modulate the formation of LLPS of proteins.


2000 ◽  
Vol 3 (7) ◽  
pp. 607-612 ◽  
Author(s):  
Kazuo KONDO ◽  
Katsuhiko HAYASHI ◽  
Zennosuke TANAKA ◽  
Norihiro YAMAKAWA

Life ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 151 ◽  
Author(s):  
Izabela Marcińska ◽  
Kinga Dziurka ◽  
Piotr Waligórski ◽  
Franciszek Janowiak ◽  
Edyta Skrzypek ◽  
...  

The aim of the present study was to evaluate the effect of osmotic stress caused by polyethylene glycol (PEG) 6000 in hydroponic culture on wheat seedlings of drought-resistant Chinese Spring (CS) and drought-susceptible SQ1 cultivar, and to examine the alleviative role of exogenous polyamines (PAs) applied to the medium. The assessment was based on physiological (chlorophyll a fluorescence kinetics, chlorophyll and water content) as well as biochemical (content of carbohydrates, phenols, proline, salicylic and abscisic acid, activity of low molecular weight antioxidants) parameters, measured after supplementation with PAs (putrescine, spermidine and spermine) on the 3rd, 5th and 7th day of the treatment. The results indicate that PAs ameliorate the effects of stress, indirectly and conditionally inducing stress tolerance of wheat seedlings. In contrast to the susceptible SQ1, the resistant CS cultivar activated its protective mechanisms, adjusting the degree of their activation to the level of the stress, depending on the genetic resources of the plant. Increased accumulation of antioxidants in the resistant CS in response to stress after the application of PAs confirms the hypothesis that PAs are involved in the signaling pathway determining the antioxidative response and the tolerance of wheat plants to drought stress.


Sign in / Sign up

Export Citation Format

Share Document