Computer Simulation of Oxygen Segregation in CZ/MCZ Silicon Crystals and Comparison with Experimental Results

1991 ◽  
Vol 138 (6) ◽  
pp. 1850-1855 ◽  
Author(s):  
K. M. Kim ◽  
W. E. Langlois
2012 ◽  
Vol 182-183 ◽  
pp. 1751-1755
Author(s):  
Xi Feng Zheng ◽  
Feng Chang

For the purposes of correcting the LED display image, a method based on computer simulation is proposed. First, the development of the LED display panel is introduced. Second, analyze the causes of the problem which image in LED display panel has serious high non-uniformity, and introduce the existed correction techniques which are used to reduce the non-uniformity of LED display image. Simultaneously, point out the ground for shortcomings of these techniques. Third, describe the principle of correction method based on computer simulation detail from two steps, which are the luminous collection and luminous copulation. Forth, describe the realization steps of this method in accordance with the third step. Finally, this method is supplied in a LED display panel, whose resolution is 640×480. Experimental results show that this method is able to reduce the non-uniformity of images from 11.06% to 0.98%..


Author(s):  
V Domala ◽  
R Sharma

This paper presents the design and development of an efficient modular ‘Computer Simulation Model (CSM)’ for response analysis of a moored semi-submersible. The computer simulation model is designed in two split models (i.e. computational and experimental models) and each of these models consists of various modules. The modules are developed from basic governing equations related to motion and modules are integrated and we aim for a seamless integration. The moored semi-submersible is represented mathematically as six degrees of freedom dynamic system and the coupling effects between the structure and mooring lines are considered. The basic geometric configuration of semi- submersible is modelled and analyzed for stability computations in MS-Excel*TM and then the basic governing equations related to motion are modelled mathematically in a module and solved numerically with Ansys-AQWA**TM. The computational model is validated and verified with some available experimental results. The CSM is utilized to study the surge and sway responses with respect to the horizontal range of mooring lines and our results show good validation with the existing experimental results. Our presented results show that the fibre wires have minimum steady state response in surge and sway degrees of freedom as compared with the steel wires. However, they have large drift as compared with steel wires. Finally, we show that the computer simulation model can help in detailed analysis of responses and results can be utilized for design and development of new age semi-submersibles for optimum performances for a given set of parameters.


1970 ◽  
Vol 116 (3) ◽  
pp. 461-467 ◽  
Author(s):  
B. J. Hammond ◽  
T. Julian ◽  
Y. Machiyama ◽  
R. Balázs

In the preceding paper (Balázs, Machiyama, Hammond, Julian & Richter, 1970) the flux of γ-aminobutyrate (GABA) was found, in guinea-pig brain-cortex slices incubated in glucose–saline medium, to represent about 10% of the total tricarboxylic acid cycle flux, as opposed to other estimates, which are as high as 40%. However, the latter value was deduced from experimental results by methods that made no allowance for the metabolic compartmentation of glutamate: a mathematical investigation was therefore undertaken to show that this omission necessarily leads to an overestimation of GABA flux. The magnitude of this over-estimation was shown by computer simulation methods to be of such an order as to bring the corrected value into agreement with the lower value. Computer simulation methods were also used to evaluate the GABA flux from the experimental results presented by Balázs et al. (1970) and a value of 0.0315μmol/min per g wet wt. was obtained. This value was also shown to be consistent, in the simulated system, with the experimentally observed time-courses for the radioactivity and quantity of aspartate. Since there is now evidence that GABA is itself a metabolically compartmented intermediate this possibility was considered mathematically, but it was found that in this case the assumption of compartmentation had little effect upon the value of GABA flux deduced on the basis of GABA homogeneity.


Author(s):  
Romel M. Araujo ◽  
Mário E. G. Valerio ◽  
Robert A. Jackson

Lithium niobate, LiNbO 3 , is an important technological material with good electro-optic, acousto-optic, elasto-optic, piezoelectric and nonlinear properties. Computer modelling provides a useful means of determining the properties of the material, including its defect chemistry, and the effect of doping on the structure. In this work, double-doped LiNbO 3 was studied, and the energetics of the solid-state reactions leading to incorporation of the dopants was calculated. The following combinations of dopants were studied: Fe and Cu; Ce and Cu; Ce and Mn; Fe and Rh; and Ru and Fe. For most of these combinations, the co-doping process decreases the energy required for incorporation of the dopants, and the final defect configurations are consistent with experimental results, where available.


Open Physics ◽  
2013 ◽  
Vol 11 (6) ◽  
Author(s):  
Salman Faraji ◽  
Mohammad Tavazoei

AbstractIn practice, some differences are usually observed between computer simulation and experimental results of a chaotic circuit. In this paper, it is tried to obtain computer simulation results having more correlation with those obtained in practice by using more realistic models for chaotic circuits. This goal is achieved by considering the fractionality nature of electrical capacitors in the model of a chaotic circuit.


Sign in / Sign up

Export Citation Format

Share Document