An Ultralow Dielectric Constant Porous Silica Film with Cu Directly Grown by a Displacement Process

2006 ◽  
Vol 153 (4) ◽  
pp. G341 ◽  
Author(s):  
Chin-Hao Yang ◽  
Wen-Luh Yang
2007 ◽  
Vol 515 (18) ◽  
pp. 7275-7280 ◽  
Author(s):  
Jen-Tsung Luo ◽  
Wen-Fa Wu ◽  
Hua-Chiang Wen ◽  
Ben-Zu Wan ◽  
Yu-Ming Chang ◽  
...  

2004 ◽  
Vol 812 ◽  
Author(s):  
Nobutoshi Fujii ◽  
Kazuhiro Yamada ◽  
Yoshiaki Oku ◽  
Nobuhiro Hata ◽  
Yutaka Seino ◽  
...  

AbstractPeriodic 2-dimensional (2-D) hexagonal and the disordered pore structure silica films have been developed using nonionic surfactants as the templates. The pore structure was controlled by the static electrical interaction between the micelle of the surfactant and the silica oligomer. No X-ray diffraction peaks were observed for the disordered mesoporous silica films, while the pore diameters of 2.0-4.0 nm could be measured by small angle X-ray scattering spectroscopy. By comparing the properties of the 2-D hexagonal and the disordered porous silica films which have the same porosity, it is found that the disordered porous silica film has advantages in terms of the dielectric constant and Young's modulus as well as the hardness. The disordered porous silica film is more suitable for the interlayer dielectrics for ULSI.


1988 ◽  
Vol 27 (Part 2, No. 2) ◽  
pp. L164-L166 ◽  
Author(s):  
Akihisa Yanase ◽  
Hiroshi Komiyama ◽  
Kazunobu Tanaka

2004 ◽  
Vol 5 (4) ◽  
pp. 422-427 ◽  
Author(s):  
Ming-zhi Yin ◽  
Xi Yao ◽  
Liang-ying Zhang

2002 ◽  
Vol 716 ◽  
Author(s):  
Yoshiaki Oku ◽  
Norikazu Nishiyama ◽  
Shunsuke Tanaka ◽  
Korekazu Ueyama ◽  
Nobuhiro Hata ◽  
...  

AbstractWe have recently developed novel periodic nanoporous silicate glass with high structural stability as low-k thin film by spin-coating method. Periodic porous silicate glass films developed so far cause structural shrinkage (10>∼20% or more) by annealing the spin-coated films. In this investigation we adopt vapor-phase TEOS (tetraethoxysilane)-treatment before anneal. Our novel nanoporous film shows little shift of XRD peak position after annealed at 673K, indicating both the ultimate mechanical strength and the minimization of stress in the interface between the prepared film and the underlying substrate. Such a shrinkage-free periodic nanoporous silica film can possess higher VBD (break down voltage) and lower ILeak (leakage current). In this article we estimate structural properties (including information on pores introduced intentionally) by XRD and TEM observation, and electrical properties (dielectric constant, VBD and ILeak) by IV and CV measurement of this special-treated periodic nanoporous silica film. The dielectric constant of the thus prepared periodic porous silica film with silylation after calcination was evaluated to be around 1.8 at 100kHz.


2002 ◽  
Author(s):  
Kazuhiro Yamada ◽  
Yoshiaki Oku ◽  
Nobuhiro Hata ◽  
Shozo Takada ◽  
Takamaro Kikkawa

2004 ◽  
Vol 812 ◽  
Author(s):  
Kazuo Kohmura ◽  
Shunsuke Oike ◽  
Masami Murakami ◽  
Hirofumi Tanaka ◽  
Syozo Takada ◽  
...  

AbstractA novel organosiloxane-vapor-annealing method has been developed for improving the mechanical strength of porous silica films with a low dielectric constant. Treatment of a porous silica film with 1,3,5,7-tetramethylcyclotetrasiloxane (TMCTS) under atmospheric nitrogen above 350 °C significantly enhanced the mechanical strength (i.e., elastic modulus and hardness) of the film. Results of Fourier transform infrared spectroscopy (FT-IR) and thermal desorption spectroscopy (TDS) suggested the formation of cross-linked poly(TMCTS) network on the porous silica internal wall surfaces by the TMCTS treatment. Such TMCTS cross-linked network is thought to enhance the mechanical strength of the low-k film.


2000 ◽  
Vol 612 ◽  
Author(s):  
Jun-Ying Zhang ◽  
Ian W. Boyd

AbstractWe report low temperature (25-200°C) photo-assisted sol-gel processing for the formation of porous silicon dioxide films on Si (100) substrates using 172 nm radiation from an excimer lamp. The effects of substrate temperature and irriadation time on the properties of the films formed have been studied using ellipsometry, Fourier transform infrared spectroscopy (FTIR), and electrical measurements. The FTIR spectra revealed the presence of a Si-O-Si stretching vibration peak at 1070 cm-1 after UV irradiation at 200°C. This is similar to that recorded for oxides grown by thermally oxidation of silicon at temperatures between 600-1000°C. Capacitance measurements indicated that the dielectric constant values of the films, found to be between 1.7-3.3, strongly depended on the substrate temperature during irradiation. Dielectric constant values as low as 1.7 were readily achievable at room temperature. These results show that the photochemical induced effects initiated by the UV radiation enable both reduced processing times and reduced processing temperatures to be used.


Sign in / Sign up

Export Citation Format

Share Document