Ex situ Evaluation of Tungsten Oxide as a Catalyst Support for PEMFCs

2007 ◽  
Vol 154 (6) ◽  
pp. B533 ◽  
Author(s):  
H. Chhina ◽  
S. Campbell ◽  
O. Kesler
2013 ◽  
Vol 11 (1) ◽  
Author(s):  
Denis Bona ◽  
Dennis E. Curtin ◽  
Francesco Pedrazzo ◽  
Elena Maria Tresso

Carbon black based electrodes are generally recognized as state of the art for PEM fuel cell technology due to the high performance achieved with a relatively low Pt content. However, the catalyst carbon support is prone to carbon oxidation. This leads to a loss of the catalyst area and overall performance, along with a higher mass transport loss due to an increased flooding tendency. This phenomenon is particularly severe when the fuel cell experiences repetitive start-stop cycles. Therefore, specific countermeasures against catalyst layer carbon oxidation are required, especially for automotive and backup power applications, where the startup/shutdown rate is considerably high. The authors evaluated a basic design that uses a stack shunt. A properly modified control protocol, which includes the stack shunt, is able to avoid high cathode potential peaks, which are known to accelerate catalyst carbon support corrosion and its negative effects. During two separate durability tests, one adopting the shunt design and another using nonprotected shutdown, a 24-cell stack was subjected to continuous starts and stops for several months and its performance constantly monitored. The results show that when the shunt is used, there is a 37% reduction in the voltage degradation rate for each startup/shutdown cycle and a two-fold increase in the number of startup/shutdown cycles before an individual cell reached the specified “end of life” voltage criteria. Furthermore, ex situ FE-SEM analysis revealed cathode catalyst layer thinning, which is an indication that the emerging degradation mechanism is the catalyst support carbon corrosion, as expected. This provides further support that the constant voltage degradation rate typically experienced in PEMFCs can be primarily attributed to the catalyst support carbon corrosion rate. The proposed shunt protocol is very cost effective and does not require any substantial changes in the system. For this reason, its adoption is recommended as a viable method to decrease the catalyst support carbon corrosion rate and extend the operating life of the PEMFC stack.


2014 ◽  
Vol 162 (3) ◽  
pp. F280-F290 ◽  
Author(s):  
Christoph Heinzl ◽  
Katharina A. Hengge ◽  
Markus Perchthaler ◽  
Viktor Hacker ◽  
Christina Scheu

2013 ◽  
Vol 67 (2) ◽  
pp. 303-311
Author(s):  
Maja Obradovic ◽  
Biljana Babic ◽  
Nedeljko Krstajic ◽  
Snezana Gojkovic

Tungsten carbide was synthesized by calcination of carbon cryogel with embedded tungsten in a form of metatungstate. This material was used as a support for Pt nanoparticles. XRD pattern of W-C support indicates the presence of WC, W2C, and unreacted W, as well as graphitized carbon. According to the previous TEM analysis of W-C support, it contains particles with core-shell structure, where W particle was covered with the shell of a mixture of WC and W2C. The average Pt grain size calculated from XRD pattern was about 6 nm. Cyclic voltammogram of W-C support was recorded within potential range relevant for its application as a catalyst support in fuel cells. Pair of anodic/cathodic peaks close to the negative potential limit could be ascribed to the intercalation of hydrogen within hydrous tungsten oxide, which is always present on the surface of WC in aqueous solutions. Cyclic voltammogram of Pt/W-C indicated that tungsten oxide species are present on tungsten carbide shell as well as on the surface of Pt nanoparticles. Pt surface is only partially covered by hydrous tungsten oxide. Hydrogen intercalation in hydrous tungsten oxide is enhanced in the presence of Pt nanoparticles. Also, the presence of hydrated tungsten oxide leads to the decrease of OH chemisorbed on Pt surface. Stripping of underpotentially deposited copper was used for the assessment of Pt surface area and the specific surface area of Pt was estimated to 41 m2 g-1. Electrochemical oxygen reduction reaction was examined on the synthesized Pt/W-C catalyst and compared with the results on the commercial Pt/C catalyst. It was found that the current densities at Pt/W-C are almost double as those on Pt/C. The Tafel plots for both catalysts are characterized with two Tafel slopes: -0.060 V dec-1 at low current densities, and -0.120 V dec-1 at high current densities. From the rotational dependence of the reaction rate, it was found that oxygen reduction on both Pt/W-C and Pt/C follows the first order kinetics with respect to O2 and that four electrons are transferred per O2 molecule. The results show that the presence of tungsten carbide in support material i.e. hydrous tungsten oxide on Pt surface, leads to promotion of oxygen reduction on the Pt/W-C catalyst. It was assumed that oxophilic hydrated tungsten oxide hinders OH adsorption on Pt surface, thus increasing Pt surface area available for O2 adsorption and its electrochemical reduction.


RSC Advances ◽  
2016 ◽  
Vol 6 (95) ◽  
pp. 92852-92856 ◽  
Author(s):  
Yang Zhou ◽  
Chen Li ◽  
Junxiang Fu ◽  
Changlin Yu ◽  
Xian-Chao Hu

Tungsten trioxide (WO3) spheres decorated with nitrogen-doped graphene (NRGO–WO3) were synthesized by applying the spray-drying procedure and characterized for their ability to serve as an electro-catalyst support for formic acid electro-oxidation.


2014 ◽  
Vol 20 (S3) ◽  
pp. 1960-1961
Author(s):  
C.E. Kliewer ◽  
S.L. Soled ◽  
S. Miseo

Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove ◽  
R. T. Tung

The cobalt disilicide/silicon system has potential applications as a metal-base and as a permeable-base transistor. Although thin, low defect density, films of CoSi2 on Si(111) have been successfully grown, there are reasons to believe that Si(100)/CoSi2 may be better suited to the transmission of electrons at the silicon/silicide interface than Si(111)/CoSi2. A TEM study of the formation of CoSi2 on Si(100) is therefore being conducted. We have previously reported TEM observations on Si(111)/CoSi2 grown both in situ, in an ultra high vacuum (UHV) TEM and ex situ, in a conventional Molecular Beam Epitaxy system.The procedures used for the MBE growth have been described elsewhere. In situ experiments were performed in a JEOL 200CX electron microscope, extensively modified to give a vacuum of better than 10-9 T in the specimen region and the capacity to do in situ sample heating and deposition. Cobalt was deposited onto clean Si(100) samples by thermal evaporation from cobalt-coated Ta filaments.


Author(s):  
K. Barmak

Generally, processing of thin films involves several annealing steps in addition to the deposition step. During the annealing steps, diffusion, transformations and reactions take place. In this paper, examples of the use of TEM and AEM for ex situ and in situ studies of reactions and phase transformations in thin films will be presented.The ex situ studies were carried out on Nb/Al multilayer thin films annealed to different stages of reaction. Figure 1 shows a multilayer with dNb = 383 and dAl = 117 nm annealed at 750°C for 4 hours. As can be seen in the micrograph, there are four phases, Nb/Nb3-xAl/Nb2-xAl/NbAl3, present in the film at this stage of the reaction. The composition of each of the four regions marked 1-4 was obtained by EDX analysis. The absolute concentration in each region could not be determined due to the lack of thickness and geometry parameters that were required to make the necessary absorption and fluorescence corrections.


Sign in / Sign up

Export Citation Format

Share Document