Effect of Slurry Application/Injection Methods and Polishing Conditions on Bow Wave Characteristics

2019 ◽  
Vol 34 (1) ◽  
pp. 659-663
Author(s):  
Xiaoyan Liao ◽  
Yasa Sampurno ◽  
Yun Zhuang ◽  
Fransisca Sudargho ◽  
Adam Rice ◽  
...  
2003 ◽  
Vol 13 (5-6) ◽  
pp. 475-498 ◽  
Author(s):  
K. Pianthong ◽  
B. E. Milton ◽  
M. Behnia

1997 ◽  
Vol 28 (1) ◽  
pp. 51-64 ◽  
Author(s):  
S.K. Mishra ◽  
M.K. Jain ◽  
S.M. Seth

The flood waves are characterized within the frame-work of loop (or hysteresis) of rating curves. The National Weather Service's Dam Break Flood Forecasting Model is used to generate the flood waves in the downstream valley of the Bargi dam located in Central India. The quantified hystereses, η, of non-dimensional rating curves are related with the corresponding flood wave characteristics, viz., speed of travel, wave number, phase difference, and attenuation. The analysis has led to the development of an exact relationship between η and phase difference. Using the concept of wave zoning, the better performance of the hysteresis based criteria compared with the available criteria is verified using Convex and Muskingum-Cunge routing in the wave zones. η limits are specified for the applicability of these simplified routing models. Furthermore, the envisaged applications of the based analysis are introduced.


2018 ◽  
Vol 74 (2) ◽  
pp. I_1333-I_1338
Author(s):  
Yoko SHIBUTANI ◽  
Yasuo KOTAKE ◽  
Nobuhito MORI ◽  
Jun SASAKI
Keyword(s):  

1959 ◽  
Vol 63 (585) ◽  
pp. 508-512 ◽  
Author(s):  
K. W. Mangler

When a body moves through air at very high speed at such a height that the air can be considered as a continuum, the distinction between sharp and blunt noses with their attached or detached bow shocks loses its significance, since, in practical cases, the bow wave is always detached and fairly strong. In practice, all bodies behave as blunt shapes with a smaller or larger subsonic region near the nose where the entropy and the corresponding loss of total head change from streamline to streamline due to the curvature of the bow shock. These entropy gradients determine the behaviour of the hypersonic flow fields to a large extent. Even in regions where viscosity effects are small they give rise to gradients of the velocity and shear layers with a lower velocity and a higher entropy near the surface than would occur in their absence. Thus one can expect to gain some relief in the heating problems arising on the surface of the body. On the other hand, one would lose farther downstream on long slender shapes as more and more air of lower entropy is entrained into the boundary layer so that the heat transfer to the surface goes up again. Both these flow regions will be discussed here for the simple case of a body of axial symmetry at zero incidence. Finally, some remarks on the flow field past a lifting body will be made. Recently, a great deal of information on these subjects has appeared in a number of reviewing papers so that little can be added. The numerical results on the subsonic flow regions in Section 2 have not been published before.


2021 ◽  
Vol 9 (8) ◽  
pp. 835
Author(s):  
Mochamad Riam Badriana ◽  
Han Soo Lee

For decades, the western North Pacific (WNP) has been commonly indicated as a region with high vulnerability to oceanic and atmospheric hazards. This phenomenon can be observed through general circulation model (GCM) output from the Coupled Model Intercomparison Project (CMIP). The CMIP consists of a collection of ensemble data as well as marine surface winds for the projection of the wave climate. Wave climate projections based on the CMIP dataset are necessary for ocean studies, marine forecasts, and coastal development over the WNP region. Numerous studies with earlier phases of CMIP are abundant, but studies using CMIP6 as the recent dataset for wave projection is still limited. Thus, in this study, wave climate projections with WAVEWATCH III are conducted to investigate how wave characteristics in the WNP will have changed in 2050 and 2100 compared to those in 2000 with atmospheric forcings from CMIP6 marine surface winds. The wave model runs with a 0.5° × 0.5° spatial resolution in spherical coordinates and a 10-min time step. A total of eight GCMs from the CMIP6 dataset are used for the marine surface winds modelled over 3 hours for 2050 and 2100. The simulated average wave characteristics for 2000 are validated with the ERA5 Reanalysis wave data showing good consistency. The wave characteristics in 2050 and 2100 show that significant decreases in wave height, a clockwise shift in wave direction, and the mean wave period becomes shorter relative to those in 2000.


Sign in / Sign up

Export Citation Format

Share Document