(Invited) Single-Electron Manipulation in an Attofarad-Capacitor DRAM

2021 ◽  
Vol 104 (4) ◽  
pp. 33-48
Author(s):  
Katsuhiko Nishiguchi ◽  
Kensaku Chida ◽  
Akira Fujiwara
Keyword(s):  
Author(s):  
W. Kunath ◽  
E. Zeitler ◽  
M. Kessel

The features of digital recording of a continuous series (movie) of singleelectron TV frames are reported. The technique is used to investigate structural changes in negatively stained glutamine synthetase molecules (GS) during electron irradiation and, as an ultimate goal, to look for the molecules' “undamaged” structure, say, after a 1 e/Å2 dose.The TV frame of fig. la shows an image of 5 glutamine synthetase molecules exposed to 1/150 e/Å2. Every single electron is recorded as a unit signal in a 256 ×256 field. The extremely low exposure of a single TV frame as dictated by the single-electron recording device including the electron microscope requires accumulation of 150 TV frames into one frame (fig. lb) thus achieving a reasonable compromise between the conflicting aspects of exposure time per frame of 3 sec. vs. object drift of less than 1 Å, and exposure per frame of 1 e/Å2 vs. rate of structural damage.


Author(s):  
G.Y. Fan ◽  
Bruce Mrosko ◽  
Mark H. Ellisman

A lens coupled CCD camera showing single electron sensitivity has been built for TEM applications. The design is illustrated in Fig. 1. The bottom flange of a JEM-4000EX microscope is replaced by a special flange which carries a large rectangular leaded glass window, 22 mm thick. A 20 μm thick layer of red phosphor is coated on the window, and the entire window is sputter-coated with a thin layer of Au/Pt. A two-lens relay system is used to provide efficient coupling between the image on the phosphor scintillator and the CCD imager. An f1.0 lens (Goerz optical) with front focal length 71.6 mm is used as the collector. A mirror prism, of the Amici type, is used to "bend" the optical path by 90° to prevent X-rays which may penetrate the leaded glass from hitting the CCD detector. Images may be relayed directly to the camera (1:1) or demagnified by a factor of up to 3:1 by moving the lens assembly.


1998 ◽  
Vol 168 (2) ◽  
pp. 219
Author(s):  
V.A. Krupenin ◽  
S.V. Lotkhov ◽  
H. Scherer ◽  
A.B. Zorin ◽  
F.-J. Ahlers ◽  
...  

2016 ◽  
Vol E99.C (2) ◽  
pp. 285-292 ◽  
Author(s):  
Tran THI THU HUONG ◽  
Hiroshi SHIMADA ◽  
Yoshinao MIZUGAKI

Author(s):  
A. G. Wright

Standards laboratories can provide a photocathode calibration for quantum efficiency, as a function of wavelength, but their measurements are performed with the photomultiplier operating as a photodiode. Each photoelectron released makes a contribution to the photocathode current but, if it is lost or fails to create secondary electrons at d1, it makes no contribution to anode current. This is the basis of collection efficiency, F. The anode detection efficiency, ε‎, allied to F, refers to the counting efficiency of output pulses. The standard method for determining F involves photocurrent, anode current, count rate, and the use of highly attenuating filters; F may also be measured using methods based on single-electron responses (SERs), shot noise, or the SER at the first dynode.


AIP Advances ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 105005
Author(s):  
Mitsuki Ito ◽  
Mamiko Yagi ◽  
Moe Shimada ◽  
Jun-ichi Shirakashi

2001 ◽  
Vol 89 (1) ◽  
pp. 410-419 ◽  
Author(s):  
Nicole Y. Morgan ◽  
David Abusch-Magder ◽  
Marc A. Kastner ◽  
Yasuo Takahashi ◽  
Hiroyuki Tamura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document