Role of Oxalate Anions on the Evolution of Widened Pore Diameter and Characteristics of Room-Temperature Anodic Aluminum Oxide

2017 ◽  
Vol 164 (4) ◽  
pp. C121-C127 ◽  
Author(s):  
C. K. Chung ◽  
D. Dhandapani ◽  
C. J. Syu ◽  
M. W. Liao ◽  
B. Y. Chu ◽  
...  
Author(s):  
Iwona Dobosz

AbstractPorous anodic aluminum oxide membranes were fabricated via two-step anodization of aluminum in 0.3 M H2C2O4, 0.3 M H2SO4 and 0.17 M H3PO4 solutions. The parameters of the oxide film such as: pore diameter (Dp), interpore distance (Dc), porosity (P) and pore density (ρ) can be completely controlled by the operating conditions of the anodization. Additionally, the pore diameters and pore density can be controlled via a chemical treatment (pore opening/widening process). The effect of anodizing conditions such as the applied voltage, type of electrolyte and purity of the substrate on the rate of porous oxide growth are discussed. The obtained results were compared with the theoretical predictions and data that has been reported in the literature. The influence of the duration of chemical etching on the structural features of the oxide membranes was studied. On the based on qualitative and quantitative FFT analyzes and circularity maps, it was found that the nanostructures of anodized aluminum have the maximum order under certain specified conditions. The presence of alloying elements affects not only the rate of oxide growth but also the morphology of the anodic aluminum oxide. The rate of oxide growth depends on the electrolyte type and temperature. During chemical treatment of the oxide films pore diameter increases with the pore widening time and the highest pore widening was observed in phosphoric acid solution.


2017 ◽  
Vol 751 ◽  
pp. 363-367
Author(s):  
Peerawith Sumtong ◽  
Apiluck Eiad-Ua

Anodic Aluminum Oxide (AAO) membrane has been successfully fabricated from two-step anodization with aluminum low grade (Al6061). The pore density, the pore diameter, and the interpore distance can be controlled by varying anodization process conditions. However, there are limits to control the mechanical strength and growth of AAO arrays, such as pore density, pore diameter and interpore distance. In this research the self-organized two-step anodization is carried out varying time at 24, 48 and 72 hours, respectively with 40V at the low temperature 2-5°C. The optimum conditions of AAO with two-step anodization is 40V for 48 hr. Finally, AAO substrate is separated from aluminum low-grade and enlarged pore diameter with pore widening process by 5% H3PO4. The physical properties were investigated by mean of field emission scanning electron microscope (FE-SEM) show that the average pore diameter and average interpore distance increase with the anodization time. Al6061 Aluminum substrate can be used to fabricate a nanoporous AAO film with an average pore diameter and average interpore distance larger than 70 and 90 nanometers, respectively but less mechanical stability.


2008 ◽  
Vol 93 (22) ◽  
pp. 223903 ◽  
Author(s):  
Tsung-Ju Lin ◽  
Hsin-Liang Chen ◽  
Yang-Fang Chen ◽  
Soofin Cheng

2016 ◽  
Vol 872 ◽  
pp. 152-156
Author(s):  
Peerawith Sumtong ◽  
Apiluck Eiad-Ua ◽  
Khattiya Chalapat

Anodic aluminum oxide (AAO) is well known for its nanoscopic structures and its applications in microfluidics, sensors and nanoelectronics. The pore density, the pore diameter, and the interpore distance of an AAO substrate can be controlled by varying anodization process conditions. In this research, the self-organized two-step anodization is carried out with a low-grade (Al6061) aluminium substrate using a 40V voltage at the temperature of 2 to 5 °C. Three experiments are done with the anodization time of 24 hours, 48 hours and 72 hours. The structural features of AAO are characterized by a field emission electron microscope (FE-SEM). The data from FE-SEM show that the average pore diameter increases with the anodization time, and that the Al6061 aluminium substrate can be used to fabricate a nanoporous AAO film with an average pore diameter smaller than 17 nanometers.


2011 ◽  
Vol 383-390 ◽  
pp. 5522-5525
Author(s):  
Ji Yan He ◽  
Jian Dan Ren ◽  
Yan Bin He

Uniform parallel pores and controllable pore diameter make Anodic Aluminum Oxide (AAO) membrane one of the best materials in synthesis of one-dimensional nano-structured material. High orderly AAO template was prepared by anodic-oxidation. The prepared AAO membrane’s apertures ranged from 30 nm to 75 nm. Within a few microns, holes were orderly arranged. The fabricating methods of AAO template in different electrolyte were studied and the factors which affect the pore distribution, such as electrolyte types, voltage and concentration were discussed.


2014 ◽  
Vol 941-944 ◽  
pp. 1271-1274
Author(s):  
Di Ma ◽  
Shu Bai Li ◽  
Long Gui Xu ◽  
Xin Yan Dong ◽  
Xiu Ying Hu

The surface of porous anodic aluminum oxide (AAO) film anodizing in malonic acid, which is characterized by Scanning Electron Microscope (SEM) and ImageJ software. There are disorderly tiny pores or stripes on the first once anodizing surface. Pore diameter, pore density and porosity are decided by the first anodizing process. With anodizing step increased, pore diameter of the membrane decreased. Two-step anodization improves the order of PAA membrane greatly, which is processed on the basic of the ordered array pits at the aluminum that is observed after removing membrane of the one-step anodization. According to the experiments, porous anodic aluminum oxide (PAA) was prepared in 1.0 mol/L malonic acid, its pore diameter increased and porosity decreased with anodizing voltage increased.


Sign in / Sign up

Export Citation Format

Share Document