Phase Separation in Electrodeposited Ag-Pd Alloy Films from Acidic Nitrate Bath

2019 ◽  
Vol 166 (8) ◽  
pp. D339-D349 ◽  
Author(s):  
Yunkai Sun ◽  
Giovanni Zangari
1990 ◽  
Vol 117-118 ◽  
pp. 429-432 ◽  
Author(s):  
Kazuhide Tanaka ◽  
Masanori Ushida ◽  
Kenji Sumiyama ◽  
Yoji Nakamura

1994 ◽  
Vol 337 ◽  
Author(s):  
A.G. Dirks ◽  
R.A. Augur ◽  
S. Kordić ◽  
R.A.M. Wolters

ABSTRACTDifficulty during plasma etching and post-etch corrosion are major drawbacks of Al-Si-Cu alloy films, when used for integrated circuit interconnect. Moreover, the relatively large solute mobility of Cu in Al may lead to void formation by precipitate coarsening. As integrated circuit dimensions decrease reliability issues, such as electromigration and mechanical stress voiding, are becoming increasingly important. At present several types of Al alloys are considered as possible alternatives for Al-Si-Cu: Al-Pd, Al-Sc, Al-Pd-Cu, Al-Si-Pd, Al-Si-V, Al-Si-Sc, Al-Si-Pd-Nb, and Al-Si-V-Pd. The latter quaternary alloy has been designed such as to combine the positive aspects of both Pd and V. In comparison with Cu in Al, a) the (low temperature) solid solubility is negligible for Pd and small for V, and b) the mobility is similar for Pd, but very small for V.With transmission-electron microscopy, passivated Al-Si-Cu alloy films have been studied after thermal stressing at 200 °C: ө-Al2Cu coarsening was observed together with void condensation. Lifetests on unpassivated Al-Si-V-Pd alloys at 180 °C and 2xl06A/cm2 have shown an extremely high resistance to electromigration. Electromigration and microstructural data on these quaternary alloys will be presented. These findings suggest how the microstructure is stabilized by the combined action of the V and Pd solute atoms, a) by nm-scale (A1,V) precipitates within the Al grains and b) by small (Al,Pd) particles at the Al grain boundaries. Furthermore, the key issues in terms of reliability related microstructural phenomena are both solute and solvent mobilities in grain interiors as well as along interfaces and grain boundaries. Arguments will be given showing that at low solute concentrations the metals (V and Pd) each by themselves are not effective enough to influence the solvent motion of aluminium along interfaces and grain boundaries significantly. The combination of the two metals, however, was found to be very effective.


1999 ◽  
Vol 193 (1-3) ◽  
pp. 174-176 ◽  
Author(s):  
E. Gan'shina ◽  
V. Guschin ◽  
I. Romanov ◽  
A. Skobelev ◽  
A. Tselev

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Jae-Yun Han ◽  
Chang-Hyun Kim ◽  
Sang-Ho Kim ◽  
Dong-Won Kim

For the commercial applications of hydrogen separation membranes, both high hydrogen selectivity and permeability (i.e., perm-selectivity) are required. However, it has been difficult to fabricate thin, dense Pd alloy composite membranes on porous metal support that have a pore-free surface and an open structure at the interface between the Pd alloy films and the metal support in order to obtain the required properties simultaneously. In this study, we fabricated Pd alloy hydrogen separation membranes with dense/porous hybrid structure for high hydrogen perm-selectivity. The hydrogen selectivity of this membrane increased owing to the dense and pore-free microstructure of the membrane surface. The hydrogen permeation flux also was remarkably improved by the formation of an open microstructure with numerous open voids at the interface and by an effective reduction in the membrane thickness as a result of the porous structure formed within the Pd alloy films.


2020 ◽  
Vol 167 (6) ◽  
pp. 062506 ◽  
Author(s):  
Yunkai Sun ◽  
Amir Chamaani ◽  
Giovanni Zangari
Keyword(s):  
Pd Alloy ◽  

Author(s):  
N. Rozhanski ◽  
V. Lifshitz

Pd-W alloy films are of interest because of their use for contact fabrication in microelectronic devices.In the present work Pd2 5W7 5, Pd4 0W6 0, Pd9 0W1 0 films were sputter deposited on Si(100) and only Pd9 0W1 0 films were polycrystalline.The amorphization of Pd- W films, possibly due to impurities, was not observed previously. The reaction of Pd9 0W1 0 films with a Si substrate begins at 200°C and leads to the formation of Pd2Si in two equivalent epitaxial orientations: A and B.In contrast to Ni-Nb films the presence of the native SiO2 layer under Pd-W alloy does not prevent the diffusion processes and the formation of silicides both on bulk and on plan-view specimens.Amorphous Pd-W films do not react with Si up to∼500°C and their crystallisation begins at T∼575°C.The reaction is also followed by the formation of two types of epitaxially oriented Pd2 Si islands as shown in Figure 1.The crystallisation of the films is accompanied by the formation of W grains.Pd crystals were not observed, that is possibly due to Pd precipitation at W grain boundaries.


1994 ◽  
Vol 338 ◽  
Author(s):  
J.R. Kraayeveld ◽  
R.A. Augur ◽  
A.G. Dirks ◽  
A.H. Verbruggen ◽  
S. Radelaar

ABSTRACTThe electromigration lifetime of Al-Si (1 at.% Si) can be greatly increased by alloying with V and Pd (0.1 at.% V, 0.1 at.% Pd). This study reports on l/fα (α≈l) noise measurements in Al-Si, Al-Si-V and Al-Si-V-Pd alloy films. Samples were prepared by direct current (DC) sputtering, e-beam lithography and reactive-ion etching. The samples were annealed at 450 °C for 30 min and were not passivated. Test line dimensions were 800μm×l.2μm×0.5μm. 1/f noise was measured by a high-resolution alternating current (AC) bridge technique, which ensured that no electromigration occurred during the measurements. The sample-to-sample variation in normalized 1/f noise intensity for Al-Si, Al-Si-V and, Al-Si-V-Pd, measured at room temperature, was less than 10%. The smallest noise intensities were observed in the Al-Si-V-Pd films. The temperature dependence of the 1/f noise of Al-Si films shows a maximum at 338 K allowing the determination of the activation energy of the noise generating process (Ea = 0.75 eV). Above 400 K the resistance of the samples became unstable preventing reliable noise measurements. The instabilities were probably caused by the dissolution of very small Si precipitates (<10 nm). This is important information because the dissolution will also take place during electromigration lifetime experiments.


Sign in / Sign up

Export Citation Format

Share Document