Thermodynamic Model of the Cell Voltage Response of Proton Exchange Membrane Fuel Cell

2006 ◽  
Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3478 ◽  
Author(s):  
Arne L. Lazar ◽  
Swantje C. Konradt ◽  
Hermann Rottengruber

This work presents an open-source, dynamic, 1D, proton exchange membrane fuel cell model suitable for real-time applications. It estimates the cell voltage based on activation, ohmic and concentration overpotentials and considers water transport through the membrane by means of osmosis, diffusion and hydraulic permeation. Simplified equations reduce the computational load to make it viable for real-time analysis, quick parameter studies and usage in complex systems like complete vehicle models. Two modes of operation for use with or without reference polarization curves allow for a flexible application even without information about cell parameters. The program code is written in MATLAB and provided under the terms and conditions of the Creative Commons Attribution License (CC BY). It is designed to be used inside of a Simulink model, which allows this fuel cell model to be used in a wide variety of 1D simulation platforms by exporting the code as C/C++.


Author(s):  
Chen-Chung Chung ◽  
Chiun-Hsun Chen ◽  
Hsiang-Hui Lin ◽  
Yi-Yie Yan

The investigation studies improving PEMFC carbon monoxide by a periodic air dosing. The carbon monoxide in the fuel gas leads to a significant loss in power density due to CO poisoning in the anode. The method involves bleeding air into the anode fuel stream (H2-CO), which contains CO in various concentrations (20, 52.7, 100 ppm). In the transient CO poisoning test, air-bleeding is performed for four different periodic air dosing and cell voltage is fixed at 0.6 V. The result of a dosing of air during 10 sec in intervals of 10 sec is similar to that of continuous air-bleeding except 100 ppm CO. The CO tolerance of the fuel cell and cell performance recovery from poisoning can be improved by air-bleeding.


2010 ◽  
Vol 34-35 ◽  
pp. 92-97
Author(s):  
Rui Quan ◽  
Shu Hai Quan ◽  
Liang Huang

Proton exchange membrane fuel cell(PEMFC) technology has been greatly promoted in recent years, but the fault diagnosis and predictive maintenance are unneglectable issues in practical work. According to the safety and reliability requirement of 60kW automotive fuel cell engine designed by our group, a fault diagnosis method based on T-S fuzzy model which is tuned and optimized thanks to particle swarm optimization is put forward in this paper. Its inputs include voltage, the lowest single cell voltage, current, temperature and air pressure, by setting the output threshold of T-S fuzzy model at 0.85,when the healthy degree and its variety rate are below 0.85 and 0.05 respectively, the flooding fault is distinguished, if the healthy degree is below 0.85 but its variety rate is above 0.05,drying of the proton membrane is on-line diagnosed successfully, which can provide a guidance to its real-time monitoring and optimized control in future.


Author(s):  
A. B. Mahmud Hasan ◽  
S. M. Guo ◽  
S. V. Ekkad

The performance of a Proton Exchange Membrane Fuel Cell (PEMFC) using different feeding configurations has been studied. Three bipolar plates, namely serpentine, straight channel and interdigitated designs, were arranged in different combinations for the PEMFC anode and cathode sides. Nine combinations in total were tested under different flow rates, working temperatures and loadings. The cell voltage versus current density and the cell power density versus current density curves were obtained. After operating the PEMFC under high current densities, the cell was split and the water flooding in the feeding channels was visually inspected. Experimental results showed that for different feeding configurations, interdigitated bipolar plate in anode side and serpentine bipolar plate in cathode side had the best performance in terms of cell voltage-current density curve, power density output rate, percentage of flooded area in the feeding channels, the pattern of flooding and the fuel utilization rate.


Author(s):  
T Ous ◽  
C Arcoumanis

The effect of the compressive force on the performance of a proton exchange membrane fuel cell has been examined experimentally. The performance has been evaluated on two polarization regions of the cell: ohmic and mass transport. Cell voltage and current density as a function of pressure were measured under constant load and various inlet air humidity conditions. The pressure distribution on the surface of the gas diffusion layer was measured using a pressure detection film and the results show that increasing the pressure improves the performance of the cell. The improvement of the cell voltage in the ohmic region was found to be greater than that in the mass transport region, whereas for the cell current density, the mass transport region exhibited higher change. The increase in the cell specific power in the ohmic and mass transport regions, as pressure increases from 0 to 2MNm-2, is estimated to be 9 and 18mWcm−2, respectively. However, the fuel cell performance in these two regions declined dramatically when excessive pressure (≥5 MNm−2) was applied. The mass transport region proved to be more susceptible to this sharp decline under excessive pressure than the ohmic region.


2019 ◽  
Vol 62 (2) ◽  
pp. 475-483
Author(s):  
Sachin A. Bhide ◽  
Jonathan Maisonneuve

Abstract. Solar energy’s potential as a clean, abundant, and economical energy source can be effectively exploited if it is converted to electricity. Photosynthetic solar cells (PSCs) convert sunlight to electricity by using plant cells via photosynthesis and respiration. These processes can be interrupted to provide a path of lesser resistance for the transfer of protons and electrons in a proton exchange membrane fuel cell system. PSCs require no organic fuel, no active feeding system, and produce carbon-neutral power both day and night. In this article, the mechanisms of photosynthesis that generate electrons and protons in the anode chamber are described and modeled. In addition, the concentrations of various species in the anode and cathode chambers, including plant cells, sugars, reducing agents, and catalysts, are modeled as a function of time and used to simulate the electric potential across the fuel cell. The resulting flow of electrons through the external circuit is described. The influence of non-ideal effects is described and modeled, such as the resistance to the motion of protons, reactants, and products through the electrolyte, which contributes to a voltage drop across the cell. The activation energy required for the chemical reactions also contributes to voltage drop. These dynamics are modeled using differential equations for each species. This model can be used to predict the dynamics of a PSC system under various conditions. Keywords: Cell power, Cell voltage, Microbial fuel cell, Modeling, Photosynthetic solar cell, Solar energy.


Author(s):  
Chiun-Hsun Chen ◽  
Chen-Chung Chung ◽  
Hsiang-Hui Lin ◽  
Yi-Yie Yan

This study investigates the improvement of proton exchange membrane fuel cell (PEMFC) carbon monoxide by periodic air dosing. The carbon monoxide in the fuel gas leads to a significant loss in power density due to CO poisoning in the anode. The method involves bleeding air into the anode fuel stream (H2–CO), which contains CO in various concentrations (20ppm, 52.7ppm, and 100ppm). In the transient CO poisoning test, air bleeding is performed for four different periodic air dosing and cell voltage is fixed at 0.6V. The result of a dosing of air for 10s in intervals of 10s is similar to that of continuous air bleeding except for 100ppm CO. The CO tolerance of the fuel cell and cell performance recovery from poisoning can be improved by air bleeding.


Sign in / Sign up

Export Citation Format

Share Document