scholarly journals Low-Temperature, Low-Cost Liquid Metal Batteries

2020 ◽  
Vol 475 ◽  
pp. 228674
Author(s):  
Qing Gong ◽  
Wenjin Ding ◽  
Alexander Bonk ◽  
Haomiao Li ◽  
Kangli Wang ◽  
...  

2020 ◽  
Vol 463 ◽  
pp. 228233
Author(s):  
Wang Zhao ◽  
Ping Li ◽  
Kun Han ◽  
Kaixuan Cui ◽  
Chunrong Liu ◽  
...  

Matter ◽  
2020 ◽  
Vol 3 (6) ◽  
pp. 1824-1826
Author(s):  
Yuhui Tian ◽  
Shanqing Zhang

Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 28
Author(s):  
Anastasios I. Tsiotsias ◽  
Nikolaos D. Charisiou ◽  
Ioannis V. Yentekakis ◽  
Maria A. Goula

CO2 methanation has recently emerged as a process that targets the reduction in anthropogenic CO2 emissions, via the conversion of CO2 captured from point and mobile sources, as well as H2 produced from renewables into CH4. Ni, among the early transition metals, as well as Ru and Rh, among the noble metals, have been known to be among the most active methanation catalysts, with Ni being favoured due to its low cost and high natural abundance. However, insufficient low-temperature activity, low dispersion and reducibility, as well as nanoparticle sintering are some of the main drawbacks when using Ni-based catalysts. Such problems can be partly overcome via the introduction of a second transition metal (e.g., Fe, Co) or a noble metal (e.g., Ru, Rh, Pt, Pd and Re) in Ni-based catalysts. Through Ni-M alloy formation, or the intricate synergy between two adjacent metallic phases, new high-performing and low-cost methanation catalysts can be obtained. This review summarizes and critically discusses recent progress made in the field of bimetallic Ni-M (M = Fe, Co, Cu, Ru, Rh, Pt, Pd, Re)-based catalyst development for the CO2 methanation reaction.


Rare Metals ◽  
2021 ◽  
Author(s):  
Jia-Xing Song ◽  
Xin-Xing Yin ◽  
Zai-Fang Li ◽  
Yao-Wen Li

Abstract As a promising photovoltaic technology, perovskite solar cells (pero-SCs) have developed rapidly over the past few years and the highest power conversion efficiency is beyond 25%. Nowadays, the planar structure is universally popular in pero-SCs due to the simple processing technology and low-temperature preparation. Electron transport layer (ETL) is verified to play a vital role in the device performance of planar pero-SCs. Particularly, the metal oxide (MO) ETL with low-cost, superb versatility, and excellent optoelectronic properties has been widely studied. This review mainly focuses on recent developments in the use of low-temperature-processed MO ETLs for planar pero-SCs. The optical and electronic properties of widely used MO materials of TiO2, ZnO, and SnO2, as well as the optimizations of these MO ETLs are briefly introduced. The commonly used methods for depositing MO ETLs are also discussed. Then, the applications of different MO ETLs on pero-SCs are reviewed. Finally, the challenge and future research of MO-based ETLs toward practical application of efficient planar pero-SCs are proposed. Graphical abstract


2021 ◽  
Author(s):  
Mingming Su ◽  
Yajing Hu ◽  
Ao Yu ◽  
Zhiyao Peng ◽  
Wangtao Long ◽  
...  

Broadband photodetectors fabricated with organic molecules have the advantages of low cost, high flexibility, easy processing and low-temperature requirement. Fullerene molecules, due to the electron acceptor and photoinduced electron transfer...


Sign in / Sign up

Export Citation Format

Share Document