Probing Structural Changes of Pt3co Nanocatalysts By Eels and Ex/in Situ XAS Measurement

2009 ◽  
Vol 70 (9) ◽  
pp. 1274-1284 ◽  
Author(s):  
Geert Silversmit ◽  
Hilde Poelman ◽  
Veerle Balcaen ◽  
Philippe M. Heynderickx ◽  
Maria Olea ◽  
...  

2007 ◽  
Author(s):  
Geert Silversmith ◽  
Maria Olea ◽  
Hilde Poelman ◽  
Veerle Balcaen ◽  
Philippe Heynderickx ◽  
...  

2021 ◽  
Vol 882 ◽  
pp. 115034
Author(s):  
A. El Guerraf ◽  
M. Bouabdallaoui ◽  
Z. Aouzal ◽  
S. Ben Jadi ◽  
N.K. Bakirhan ◽  
...  

2014 ◽  
Vol 70 (a1) ◽  
pp. C94-C94
Author(s):  
Pawel Kuczera ◽  
Walter Steurer

The structure of d(ecagonal)-Al-Cu-Rh has been studied as a function of temperature by in-situ single-crystal X-ray diffraction in order to contribute to the discussion on energy or entropy stabilization of quasicrystals (QC) [1]. The experiments were performed at 293 K, 1223 K, 1153 K, 1083 K, and 1013 K. A common subset of 1460 unique reflections was used for the comparative structure refinements at each temperature. The results obtained for the HT structure refinements of d-Al-Cu-Rh QC seem to contradict a pure phasonic-entropy-based stabilization mechanism [2] for this QC. The trends observed for the ln func(I(T1 )/I(T2 )) vs.|k⊥ |^2 plots indicate that the best on-average quasiperiodic order exists between 1083 K and 1153 K, however, what that actually means is unclear. It could indicate towards a small phasonic contribution to entropy, but such contribution is not seen in the structure refinements. A rough estimation of the hypothetic phason instability temperature shows that it would be kinetically inaccessible and thus the phase transition to a 12 Å low T structure (at ~800 K) is most likely not phason-driven. Except for the obvious increase in the amplitude of the thermal motion, no other significant structural changes, in particular no sources of additional phason-related configurational entropy, were found. All structures are refined to very similar R-values, which proves that the quality of the refinement at each temperature is the same. This suggests, that concerning the stability factors, some QCs could be similar to other HT complex intermetallic phases. The experimental results clearly show that at least the ~4 Å structure of d-Al-Cu-Rh is a HT phase therefore entropy plays an important role in its stabilisation mechanism lowering the free energy. However, the main source of this entropy is probably not related to phason flips, but rather to lattice vibrations, occupational disorder unrelated to phason flips like split positions along the periodic axis.


1990 ◽  
Vol 68 (12) ◽  
pp. 1419-1427 ◽  
Author(s):  
Gieljan J. C. G. M. Bosman ◽  
Marguerite M. B. Kay

Structural changes in human erythrocyte band 3 that affect anion transport are correlated with changes in glucose transport in situ. Breakdown of band 3, observed during normal erythrocyte aging in situ and in some diseases involving erythrocytes, is associated with an increase in Km and a decrease in Vmax of sulfate self-exchange, and with an increase in Km and Vmax of glucose efflux. Erythrocytes containing a high molecular weight form of band 3 exhibit an increase in Vmax of sulfate exchange and a decrease in Vmax of glucose efflux. Identical transport characteristics are observed in abnormal band-3-containing erythrocytes from individuals with familial amyotrophic chorea with acanthocytosis. A third band 3 alteration, fast-aging band 3, exhibits decreased Vmax of sulfate exchange and an increase in Km and decrease in Vmax of glucose efflux. Changes in band 3 structure that are the result of unstable hemoglobin or a deficiency in glucose-6-phosphate dehydrogenase and that do not affect anion transport have no effect on glucose transport characteristics. These data indicate the existence of a functional relationship between the membrane-spanning, anion-transport domain of band 3 and glucose transport in human erythrocytes. Antibodies to synthetic peptides reveal structural changes in membranes from the three inborn band 3 alterations and in band 3 itself in membranes from fast-aging band 3. Thus, immunological data suggests a structural relationship between anion and glucose transporters.Key words: red cell, anion transport, membrane proteins, aging, choreoacanthocytosis, anemia.


1991 ◽  
Vol 11 (4) ◽  
pp. 644-654 ◽  
Author(s):  
J. Greenwood ◽  
J. Adu ◽  
A. J. Davey ◽  
N. J. Abbott ◽  
M. W. B. Bradbury

The action of bile salts upon the rat blood–brain barrier (BBB) was assessed in the absence of energy-yielding metabolism. Brains were perfused in situ with a Ringer solution for 5 min followed by a 1 min perfusion containing either sodium deoxycholate (DOC), taurochenodeoxycholate (TCDC), or Ringer/DNP. The integrity of the BBB was then determined by perfusing with the radiotracer [14C]mannitol for 2.5 min. Alternatively, the brains were perfusion fixed for ultrastructural assessment. At 0.2 m M DOC, the BBB remained intact and the cerebral ultrastructure was similar to the controls. At 1 m M and above, disruption of the BBB became evident. At 2 m M, the cerebral cortex became severely vacuolated, with damaged endothelium and collapsed capillaries. With TCDC, BBB disruption occurred at 0.2 m M without any apparent ultrastructural damage to the micro vasculature. Following 2 m M TCDC, similar, but less widespread, structural changes to the 2 m M DOC-perfused animals was apparent. Opening of the BBB occurred at a concentration lower than that required to cause lysis of either red blood cells or cultured cerebral endothelial cells. It is proposed that the effect of bile salts at concentrations of 1.5 m M and above is largely due to their lytic action as strong detergents on endothelial cell membranes, but that at lower concentrations a more subtle modification of the BBB occurs.


2006 ◽  
Vol 163 (1) ◽  
pp. 185-190 ◽  
Author(s):  
Kyung Yoon Chung ◽  
Won-Sub Yoon ◽  
Hung Sui Lee ◽  
James McBreen ◽  
Xiao-Qing Yang ◽  
...  

2017 ◽  
Vol 19 (31) ◽  
pp. 20867-20880 ◽  
Author(s):  
David C. Bock ◽  
Christopher J. Pelliccione ◽  
Wei Zhang ◽  
Janis Timoshenko ◽  
K. W. Knehr ◽  
...  

Crystal and atomic structural changes of Fe3O4upon electrochemical (de)lithiation were determined.


Sign in / Sign up

Export Citation Format

Share Document