(Invited) Role of the Metal-Organic Interfaces in the Dark Current-Voltage Characteristics of Organic Solar Cells

2016 ◽  
Vol 845 ◽  
pp. 224-227 ◽  
Author(s):  
Danila Saranin ◽  
Marina Orlova ◽  
Sergey Didenko ◽  
Oleg Rabinovich ◽  
Andrey Kryukov

This article presents the results of research output voltage characteristics of solar cells on an organic basis with the use of P3HT: PCBM system. There were produced organic solar cells in a coating in air, current-voltage characteristics were measured. It was determined the characteristic influence of a substrate cleaning and annealing temperature of layers applied on fill factor and conversion efficiency.


2012 ◽  
Vol 111 (5) ◽  
pp. 054509 ◽  
Author(s):  
Julia Wagner ◽  
Mark Gruber ◽  
Andreas Wilke ◽  
Yuya Tanaka ◽  
Katharina Topczak ◽  
...  

2012 ◽  
Vol 1426 ◽  
pp. 365-370
Author(s):  
Francisco Temoltzi Avila ◽  
Andrey Kosarev ◽  
Ismael Cosme ◽  
Mario Moreno ◽  
P. Roca y Cabarrocas

ABSTRACTThe dark current-voltage characteristics of PIN structures are studied and analyzed for PV samples as for integral device without taking account the performance of the different elements typically used in equivalent circuit model such as diode n-factor, shunt and series resistances. The contribution of all these elements is very important in the development of devices because they determine the performance characteristics. In this work we have studied and compared the temperature dependence of current-voltage characteristics in μc-Si:H and pm-Si:H p-i-n structures having approximately the same efficiencies with emphasis on their different electronic characteristics such as shunt (Rsh) and series (Rs) resistance, ideality factor (n), and the saturation current (Is), which give us some ideas on role of these elements. In the pm-Si:H cell it was observed that the Rs increases with the increase of the temperature in contrast to the μc-Si:H structures, where the series resistance reduces with temperature change from T = 300 up to 480K. In both the pm-Si:H and μc-Si:H samples Rshreduces with temperature change from 300 up to 480 K. The ideality factor in the pm-Si:H structure shows an increase, and in μc-Si:H a reduction, when temperature increases. Saturation current in both cases increases with temperature as it was expected. From the saturation current it was obtained the build-in potential. Analysis behavior of both saturation current and n-factor with temperature shows that build-in potential increases with temperature in the pm-Si:H, but reduces in μc-Si:H structure.


2011 ◽  
Vol 694 ◽  
pp. 672-675
Author(s):  
Tao Li ◽  
Chun Lan Zhou ◽  
Zhen Gang Liu ◽  
Wen Jing Wang ◽  
Yang Song ◽  
...  

In this paper, the dark current-voltage characteristics of p-n junction of silicon solar cells are analysed, with different nickel film thicknesses of 200nm, 400nm and 600nm. The formation of nickel silicide is obtained after the thermal annealing process for 1min, 5min and 10min. The dark current-voltage curves obtained by three kinds of annealing temperature as a function of time are achieved in experiment. The improvement of series resistance extracted from the dark current-voltage curve in the upper voltage range is observed. The influence of nickel film thicknesses on dark current-voltage characteristics of silicon solar cells is confirmed.


2015 ◽  
Vol 17 (29) ◽  
pp. 19261-19267 ◽  
Author(s):  
Yi Zuo ◽  
Xiangjian Wan ◽  
Guankui Long ◽  
Bin Kan ◽  
Wang Ni ◽  
...  

A new equivalent electrical model was built in terms of semiconductor theory to simulate the current–voltage characteristics and reveal these current losses in solution processed small molecule based devices.


2006 ◽  
Vol 508 (1-2) ◽  
pp. 402-405 ◽  
Author(s):  
Arnold Alguno ◽  
Noritaka Usami ◽  
Keisuke Ohdaira ◽  
Wugen Pan ◽  
Misumi Tayanagi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document