(Invited) Flexible and Transparent Thermally Conductive Materials for Heat Dissipation of Electronics

2020 ◽  
Vol 856 ◽  
pp. 276-285
Author(s):  
Rungsima Yeetsorn ◽  
Yaowaret Maiket ◽  
Thitinun Ungtrakul

In our time with the growing cooling demand in electronics and energy industries, new thermally conductive materials are in high demand. Thermal gasket and thermal interface materials (TIM) are applications acquiring the characteristics of the thermally conductive materials. They are used to offer bonding strength and efficient heat dissipation for heat dissipating device applications. These materials are inserted between two components in order to increase the thermal coupling between them. Elastomeric materials are promising as the thermal gasket and TIM. They are, however, limited for thermal conductivity causing a thermal insulator behaviour. In this framework, the major challenge is to create suitable elastomeric composites for enhancing thermal conductivity, whereas remaining a good elastic behavior. This article presents the effects of thermally conductive fillers (aluminum nitrile and zinc oxide) on thermal properties and flexibility of recycled thermoplastic elastomer vulcanizate composites and reclaimed rubber composites, while the analysis of composite morphology is scrutinized. The objective of this research is to perceive the characteristics of recycled elastomeric composites in order to deduce a fundamental notion to develop the gaskets or TIMs from recycled materials. New flexible composites are capable to provide approximately 0.4 W/m-K of thermal conductivity. The result indicates that the composites are conceivable to be applied for thermally conductive tape or adhesive applications which required the thermal conductivity in the range of 0.4-0.5 W/m-K.


2017 ◽  
Vol 1 (10) ◽  
pp. 2145-2154 ◽  
Author(s):  
Bo Zhao ◽  
Xian-Zhu Fu ◽  
Rong Sun ◽  
Ching-Ping Wong

The highly thermally conductive graphene-based electrodes for supercapacitors exhibit great heat dissipation ability as well as excellent cycling performance and rate capacity.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kai-Han Su ◽  
Cherng-Yuh Su ◽  
Cheng-Ta Cho ◽  
Chung-Hsuan Lin ◽  
Guan-Fu Jhou ◽  
...  

Abstract The issue of electronic heat dissipation has received much attention in recent times and has become one of the key factors in electronic components such as circuit boards. Therefore, designing of materials with good thermal conductivity is vital. In this work, a thermally conductive SBP/PU composite was prepared wherein the spherical h-BN@PMMA (SBP) composite powders were dispersed in the polyurethane (PU) matrix. The thermal conductivity of SBP was found to be significantly higher than that of the pure h-BN/PU composite at the same h-BN filler loading. The SBP/PU composite can reach a high thermal conductivity of 7.3 Wm−1 K−1 which is twice as high as that of pure h-BN/PU composite without surface treatment in the same condition. This enhancement in the property can be attributed to the uniform dispersion of SBP in the PU polymer matrix that leads to a three-dimensional continuous heat conduction thereby improving the heat diffusion of the entire composite. Hence, we provide a valuable method for preparing a 3-dimensional heat flow path in polyurethane composite, leading to a high thermal conductivity with a small amount of filler.


RSC Advances ◽  
2018 ◽  
Vol 8 (29) ◽  
pp. 16232-16242 ◽  
Author(s):  
P. Fan ◽  
Z. Sun ◽  
Y. Wang ◽  
H. Chang ◽  
P. Zhang ◽  
...  

Compared to liquid metal (LM) microdroplets based thermally conductive materials (micro-LM-THEMs), nano LM-THEMs (nLM-THEMs) presents a more stable electric insulating property even upon stress, achieving ~50-fold thermal conductivity over base polymer.


Author(s):  
Muhammad Omer Khan ◽  
Ellen Chan ◽  
Siu N. Leung ◽  
Hani Naguib ◽  
Francis Dawson ◽  
...  

This paper studies the development of new multifunctional liquid crystal polymeric composites filled with graphene nano platelets (GNPs) for electronic packaging applications. A series of parametric studies were conducted to study the effect of GNP content on the thermal conductivity of LCP-based nanocomposites. Graphene, ranging from 10 wt. % to 50 wt. %, were melt-compounded with LCP using a twin-screw compounder. The extrudates were ground and compression molded into small disc-shaped specimens. The thermal conductivity of LCP matrix was observed to have increased by more than 1000% where as the electrical conductivity increased by 13 orders of magnitude with the presence of 50 wt% GNP fillers. The morphology of the composites was analyzed using SEM micrographs to observe the dispersion of filler within the matrix. These thermally conductive composites represent potential cost-effective materials to injection mold three-dimensional, net-shape microelectronic enclosures with superior heat dissipation performance.


2009 ◽  
Vol 131 (11) ◽  
Author(s):  
Wojciech Bejgerowski ◽  
Satyandra K. Gupta ◽  
Hugh A. Bruck

Thermally conductive filled polymers enable the creation of multifunctional structures that offer both anchoring points for the embedded actuators, as well as heat-dissipation functions, in order to facilitate the miniaturization of devices. However, there are two important challenges in creating these structures: (1) sufficient thermal management to prevent failure of the actuator and (2) the ability of the actuator to survive the manufacturing process. This paper describes a systematic approach for design of multifunctional structures with embedded heat-generating components using an in-mold assembly process to address these challenges. For the first challenge, the development of appropriate thermal models is presented along with incorporation of in-mold assembly process constraints in the optimization process. For the second challenge, a simulation of the molding process is presented and demonstrated to enable the determination of processing conditions ensuring survival of the in-mold assembly process for the embedded actuator. Thus, the design methodology described in this paper was utilized to concurrently optimize the choice of material, size of the structure, and processing conditions in order to demonstrate the feasibility of creating multifunctional structures from thermally conductive polymers by embedding actuators through an in-mold assembly process.


Sign in / Sign up

Export Citation Format

Share Document