(Invited) The Scaling-Down and Performance Optimization of InAs Nanowire Field Effect Transistors

Author(s):  
James Weil ◽  
Pankaj B. Shah ◽  
Dmitry A. Ruzmetov ◽  
Mahesh R. Neupane ◽  
Leonard M. De La Cruz ◽  
...  

Author(s):  
Raj Kumar ◽  
Shashi Bala ◽  
Arvind Kumar

To have enhanced drive current and diminish short channel effects, planer MOS transistors have migrated from single-gate devices to three-dimensional multi-gate MOSFETs. The gate-all-around nanowire field-effect transistor (GAA NWFET) and nanotube or double gate-all-around field-effect transistors (DGGA-NTFET) have been proposed to deal with short channel effects and performance relates issues. Nanowire and nanotube-based field-effect transistors can be considered as leading candidates for nanoscale devices due to their superior electrostatic controllability, and ballistic transport properties. In this work, the performance of GAA NWFETs and DGAA-NT FETs will be analyzed and compared. III-V semiconductor materials as a channel will also be employed due to their high mobility over silicon. Performance analysis of junctionless nanowire and nanotube FETs will also be compared and presented.


2019 ◽  
Vol 31 (1) ◽  
pp. 265-273 ◽  
Author(s):  
Seema Barard ◽  
Debdyuti Mukherjee ◽  
Sujoy Sarkar ◽  
T. Kreouzis ◽  
I. Chambrier ◽  
...  

AbstractSpin-coated 52-nm-thick films of newly synthesised gadolinium liquid crystalline bisphthalocyanine sandwich (GdPc2) complexes with octyl chains non-peripheral positions have been successfully employed as active layers for bottom-gate organic field effect transistors having both short $$(5\,\upmu {\text{m}})$$(5μm) and long $$( 20\,\upmu {\text{m}})$$(20μm) channels. The scaling down of the channel length $$( L )$$(L) decreases the field effect mobility due to the increase in the contact resistance between the gold electrodes and the GdPc2 semiconducting layer. Values of on–off ratio and sub-threshold voltage swing are higher nearly one order of magnitude for $$L = 5 \,\upmu{\text{ m}}$$L=5μm than those for $$L = 20\;\upmu m$$L=20μm.


Sign in / Sign up

Export Citation Format

Share Document