Tuning up Redox and Photophysical Properties of Donor-Acceptor Dichromophoric Dyads and Triads Toward a Rational Design of New Light-Harvesting Materials

2020 ◽  
Author(s):  
Zeyu Liu ◽  
Shugui Hua ◽  
Tian Lu ◽  
Ziqi Tian

Inspired by a previous experimental study on the first-order hyperpolarizabilities of 1,3-thiazolium-5-thiolates mesoionic compounds using Hyper-Rayleigh scattering technique, we theoretically investigated the UV-Vis absorption spectra and every order polarizabilities of these mesoionic molecules. Based on the fact that the photophysical and nonlinear properties observed in the experiment can be perfectly replicated, our theoretical calculations explored the essential characteristics of the optical properties of the mesoionic compounds with different electron-donating groups at the level of electronic structures through various wave function analysis methods. The influence of the electron-donating ability of the donor on the optical properties of the molecules and the contribution of the mesoionic ring moiety to their optical nonlinearity are clarified, which have not been reported by any research so far. This work will help people understand the nature of optical properties of mesoionic-based molecules and provide guidance for the rational design of molecules with excellent photoelectric performance in the future.


Small ◽  
2021 ◽  
pp. 2004836
Author(s):  
Kyunglim Pyo ◽  
Hongmei Xu ◽  
Sang Myeong Han ◽  
Shivi Saxena ◽  
Sook Young Yoon ◽  
...  

2021 ◽  
Vol 28 (7) ◽  
Author(s):  
Ashraf A. El-Shehawy ◽  
Morad M. El-Hendawy ◽  
Adel M. Attia ◽  
Abdul-Rahman I. A. Abdallah ◽  
Nabiha I. Abdo

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3355
Author(s):  
Matija Sambol ◽  
Patricia Benčić ◽  
Antonija Erben ◽  
Marija Matković ◽  
Branka Mihaljević ◽  
...  

Quinone methide precursors 1a–e, with different alkyl linkers between the naphthol and the naphthalimide chromophore, were synthesized. Their photophysical properties and photochemical reactivity were investigated and connected with biological activity. Upon excitation of the naphthol, Förster resonance energy transfer (FRET) to the naphthalimide takes place and the quantum yields of fluorescence are low (ΦF ≈ 10−2). Due to FRET, photodehydration of naphthols to QMs takes place inefficiently (ΦR ≈ 10−5). However, the formation of QMs can also be initiated upon excitation of naphthalimide, the lower energy chromophore, in a process that involves photoinduced electron transfer (PET) from the naphthol to the naphthalimide. Fluorescence titrations revealed that 1a and 1e form complexes with ct-DNA with moderate association constants Ka ≈ 105–106 M−1, as well as with bovine serum albumin (BSA) Ka ≈ 105 M−1 (1:1 complex). The irradiation of the complex 1e@BSA resulted in the alkylation of the protein, probably via QM. The antiproliferative activity of 1a–e against two human cancer cell lines (H460 and MCF 7) was investigated with the cells kept in the dark or irradiated at 350 nm, whereupon cytotoxicity increased, particularly for 1e (>100 times). Although the enhancement of this activity upon UV irradiation has no imminent therapeutic application, the results presented have importance in the rational design of new generations of anticancer phototherapeutics that absorb visible light.


Science ◽  
2018 ◽  
Vol 362 (6416) ◽  
pp. 813-816 ◽  
Author(s):  
Junling Guo ◽  
Miguel Suástegui ◽  
Kelsey K. Sakimoto ◽  
Vanessa M. Moody ◽  
Gao Xiao ◽  
...  

Inorganic-biological hybrid systems have potential to be sustainable, efficient, and versatile chemical synthesis platforms by integrating the light-harvesting properties of semiconductors with the synthetic potential of biological cells. We have developed a modular bioinorganic hybrid platform that consists of highly efficient light-harvesting indium phosphide nanoparticles and genetically engineered Saccharomyces cerevisiae, a workhorse microorganism in biomanufacturing. The yeast harvests photogenerated electrons from the illuminated nanoparticles and uses them for the cytosolic regeneration of redox cofactors. This process enables the decoupling of biosynthesis and cofactor regeneration, facilitating a carbon- and energy-efficient production of the metabolite shikimic acid, a common precursor for several drugs and fine chemicals. Our work provides a platform for the rational design of biohybrids for efficient biomanufacturing processes with higher complexity and functionality.


2016 ◽  
Vol 4 (4) ◽  
pp. 597-607 ◽  
Author(s):  
Roberto S. Nobuyasu ◽  
Zhongjie Ren ◽  
Gareth C. Griffiths ◽  
Andrei S. Batsanov ◽  
Przemyslaw Data ◽  
...  

2014 ◽  
Vol 7 (5) ◽  
pp. 1661-1669 ◽  
Author(s):  
Rijo T. Cheriya ◽  
Ajith R. Mallia ◽  
Mahesh Hariharan

This work highlights the utility of π–π stacked self-assembly for enhanced survival time of charge transfer intermediates upon photoexcitation of donor–acceptor systems.


RSC Advances ◽  
2015 ◽  
Vol 5 (92) ◽  
pp. 74986-74993 ◽  
Author(s):  
Komal Prasad ◽  
Ritesh Haldar ◽  
Tapas Kumar Maji

Based on rational design and synthesis approach, a pyrene based supramolecular flexible porous framework of Zn(ii) has been synthesized. It shows excimer emission and has been exploited for light harvesting application.


2014 ◽  
Vol 43 (13) ◽  
pp. 4778-4823 ◽  
Author(s):  
Hua Lu ◽  
John Mack ◽  
Yongchao Yang ◽  
Zhen Shen

The structure–property relationships of red/NIR region BODIPY dyes is analyzed, so that trends in their photophysical properties can be readily compared.


Sign in / Sign up

Export Citation Format

Share Document