Impact of Iron Elusion on the Capacity Degradation of FeF3 –Two-Compartment Cell Study–

2020 ◽  
Vol MA2020-01 (2) ◽  
pp. 149-149
Author(s):  
Kazuki Yoshii ◽  
Noboru Taguchi ◽  
Takeshi Miyazaki ◽  
Masahiro Shikano ◽  
Hikari Sakaebe
2011 ◽  
Vol 4 (6) ◽  
pp. 1-8
Author(s):  
Ragia M Hegazy ◽  
◽  
Eman Farouk ◽  
Taghreed G Kharboush

2021 ◽  
Vol 13 (6) ◽  
pp. 3444
Author(s):  
Zheng Li ◽  
Hao Jin ◽  
Shuo Yu

Segment reinforcement corrosion can cause bearing-capacity degradation of shield tunnel, which is unsafe for the metro operation. Therefore, a three-dimensional computational model was proposed in this paper to study the corrosion rate and rust expansion form of segment reinforcement by the combined action of soil loading, chloride ion and stray current. The results show that the arch waist segment steel corrosion rate in the middle is larger than the ends. The rust expansion form of segment reinforcement appears be an eccentric circle. The radius size and circular center are related to the non-uniform corrosion coefficient and the maximum corrosion current density.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Axel Boese ◽  
Alexander Wagner ◽  
Alfredo Illanes ◽  
Uwe Bernd Liehr ◽  
Johann Jakob Wendler ◽  
...  

AbstractPhotodynamic diagnostic (PDD) is an optical enhancement option for the endoscope to support the detection of cancer, for example in the bladder. In real application PDD efficiency suffers due to the complex accumulation of the photosensitizing drug inside the tumor and the associated processes of heme syntheses to create the fluorescent components needed. To optimize the diagnostic outcome of PDD it would be helpful to predict the optimal time for diagnosis based on measurable precursors. In a previous cell study, we proposed a new filter fluorometer to image the accumulation of the precursors Coproporphyrin III (CP-III) and Uroporphyrin III (UP-III) that metabolize to Protoporphyrin IX (PP-IX) later. This accumulation process can be used to predict the optimal time slot for diagnostic imaging. Therefore, a new filter system was designed to distinguish between CP-III and PP-IX. In this work we tested this filter system in combination with a standard PDD endoscopic imaging system. Goal of this study was to prove the technical feasibility in a non-patient setup to prepare a later clinical study.


Author(s):  
Long Li ◽  
Na Zhang ◽  
Yaqiong Su ◽  
Jing Zhao ◽  
Zhongxiao Song ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1206
Author(s):  
Xuansen Fang ◽  
Yaolong He ◽  
Xiaomin Fan ◽  
Dan Zhang ◽  
Hongjiu Hu

The prediction of electrochemical performance is the basis for long-term service of all-solid-state-battery (ASSB) regarding the time-aging of solid polymer electrolytes. To get insight into the influence mechanism of electrolyte aging on cell fading, we have established a continuum model for quantitatively analyzing the capacity evolution of the lithium battery during the time-aging process. The simulations have unveiled the phenomenon of electrolyte-aging-induced capacity degradation. The effects of discharge rate, operating temperature, and lithium-salt concentration in the electrolyte, as well as the electrolyte thickness, have also been explored in detail. The results have shown that capacity loss of ASSB is controlled by the decrease in the contact area of the electrolyte/electrode interface at the initial aging stage and is subsequently dominated by the mobilities of lithium-ion across the aging electrolyte. Moreover, reducing the discharge rate or increasing the operating temperature can weaken this cell deterioration. Besides, the thinner electrolyte film with acceptable lithium salt content benefits the durability of the ASSB. It has also been found that the negative effect of the aging electrolytes can be relieved if the electrolyte conductivity is kept being above a critical value under the storage and using conditions.


Author(s):  
Pedro Luis Camunas ◽  
Jesus Lopez Merino ◽  
Andres Pena Asensio ◽  
Manuel Garcia Plaza ◽  
Santiago Arnaltes Gomez

Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 122
Author(s):  
Peipei Xu ◽  
Junqiu Li ◽  
Chao Sun ◽  
Guodong Yang ◽  
Fengchun Sun

The accurate estimation of a lithium-ion battery’s state of charge (SOC) plays an important role in the operational safety and driving mileage improvement of electrical vehicles (EVs). The Adaptive Extended Kalman filter (AEKF) estimator is commonly used to estimate SOC; however, this method relies on the precise estimation of the battery’s model parameters and capacity. Furthermore, the actual capacity and battery parameters change in real time with the aging of the batteries. Therefore, to eliminate the influence of above-mentioned factors on SOC estimation, the main contributions of this paper are as follows: (1) the equivalent circuit model (ECM) is presented, and the parameter identification of ECM is performed by using the forgetting-factor recursive-least-squares (FFRLS) method; (2) the sensitivity of battery SOC estimation to capacity degradation is analyzed to prove the importance of considering capacity degradation in SOC estimation; and (3) the capacity degradation model is proposed to perform the battery capacity prediction online. Furthermore, an online adaptive SOC estimator based on capacity degradation is proposed to improve the robustness of the AEKF algorithm. Experimental results show that the maximum error of SOC estimation is less than 1.3%.


1967 ◽  
Vol 71 (11) ◽  
pp. 3686-3689 ◽  
Author(s):  
John H. Norman ◽  
H. Gene Staley ◽  
Wayne Elliot Bell

Sign in / Sign up

Export Citation Format

Share Document