(Invited) Measure Single Protein Size and Binding Kinetics with Plasmonic Scattering Imaging

2021 ◽  
Vol MA2021-02 (56) ◽  
pp. 1643-1643
Author(s):  
Pengfei Zhang ◽  
Guangzhong Ma ◽  
Zijian Wan ◽  
Nongjian Tao ◽  
Shaopeng Wang
Author(s):  
J. Borejdo ◽  
S. Burlacu

Polarization of fluorescence is a classical method to assess orientation or mobility of macromolecules. It has been a common practice to measure polarization of fluorescence through a microscope to characterize orientation or mobility of intracellular organelles, for example anisotropic bands in striated muscle. Recently, we have extended this technique to characterize single protein molecules. The scientific question concerned the current problem in muscle motility: whether myosin heads or actin filaments change orientation during contraction. The classical view is that the force-generating step in muscle is caused by change in orientation of myosin head (subfragment-1 or SI) relative to the axis of thin filament. The molecular impeller which causes this change resides at the interface between actin and SI, but it is not clear whether only the myosin head or both SI and actin change orientation during contraction. Most studies assume that observed orientational change in myosin head is a reflection of the fact that myosin is an active entity and actin serves merely as a passive "rail" on which myosin moves.


2013 ◽  
Author(s):  
Robert Tower ◽  
Graeme Campbell ◽  
Marc Muller ◽  
Olga Will ◽  
Frederieka Grundmann ◽  
...  

2020 ◽  
Author(s):  
Katie Mae Wilson ◽  
Aurora Burkus-Matesevac ◽  
Samuel Maddox ◽  
Christopher Chouinard

β-methylamino-L-alanine (BMAA) has been linked to the development of neurodegenerative (ND) symptoms following chronic environmental exposure through water and dietary sources. The brains of those affected by this condition, often referred to as amyotrophic lateral sclerosis-parkinsonism-dementia complex (ALS-PDC), have exhibited the presence of plaques and neurofibrillary tangles (NFTs) from protein aggregation. Although numerous studies have sought to better understand the correlation between BMAA exposure and onset of ND symptoms, no definitive link has been identified. One prevailing hypothesis is that BMAA acts a small molecule ligand, complexing with critical proteins in the brain and reducing their function. The objective of this research was to investigate the effects of BMAA exposure on the native structure of ubiquitin. We hypothesized that formation of a Ubiquitin+BMAA noncovalent complex would alter the protein’s structure and folding and ultimately affect the ubiquitinproteasome system (UPS) and the unfolded protein response (UPR). Ion mobility-mass spectrometry revealed that at sufficiently high concentrations BMAA did in fact form a noncovalent complex with ubiquitin, however similar complexes were identified for a range of additional amino acids. Collision induced unfolding (CIU) was used to interrogate the unfolding dynamics of native ubiquitin and these Ubq-amino acid complexes and it was determined that complexation with BMAA led to a significant alteration in native protein size and conformation, and this complex required considerably more energy to unfold. This indicates that the complex remains more stable under native conditions and this may indicate that BMAA has attached to a critical binding location.


2020 ◽  
Author(s):  
Katie Mae Wilson ◽  
Aurora Burkus-Matesevac ◽  
Samuel Maddox ◽  
Christopher Chouinard

β-methylamino-L-alanine (BMAA) has been linked to the development of neurodegenerative (ND) symptoms following chronic environmental exposure through water and dietary sources. The brains of those affected by this condition, often referred to as amyotrophic lateral sclerosis-parkinsonism-dementia complex (ALS-PDC), have exhibited the presence of plaques and neurofibrillary tangles (NFTs) from protein aggregation. Although numerous studies have sought to better understand the correlation between BMAA exposure and onset of ND symptoms, no definitive link has been identified. One prevailing hypothesis is that BMAA acts a small molecule ligand, complexing with critical proteins in the brain and reducing their function. The objective of this research was to investigate the effects of BMAA exposure on the native structure of ubiquitin. We hypothesized that formation of a Ubiquitin+BMAA noncovalent complex would alter the protein’s structure and folding and ultimately affect the ubiquitinproteasome system (UPS) and the unfolded protein response (UPR). Ion mobility-mass spectrometry revealed that at sufficiently high concentrations BMAA did in fact form a noncovalent complex with ubiquitin, however similar complexes were identified for a range of additional amino acids. Collision induced unfolding (CIU) was used to interrogate the unfolding dynamics of native ubiquitin and these Ubq-amino acid complexes and it was determined that complexation with BMAA led to a significant alteration in native protein size and conformation, and this complex required considerably more energy to unfold. This indicates that the complex remains more stable under native conditions and this may indicate that BMAA has attached to a critical binding location.


2018 ◽  
Author(s):  
Luke Jordan ◽  
Nathan Wittenberg

This is a comprehensive study of the effects of the four major brain gangliosides (GM1, GD1b, GD1a, and GT1b) on the adsorption and rupture of phospholipid vesicles on SiO2 surfaces for the formation of supported lipid bilayer (SLB) membranes. Using quartz crystal microbalance with dissipation monitoring (QCM-D) we show that gangliosides GD1a and GT1b significantly slow the SLB formation process, whereas GM1 and GD1b have smaller effects. This is likely due to the net ganglioside charge as well as the positions of acidic sugar groups on ganglioside glycan head groups. Data is included that shows calcium can accelerate the formation of ganglioside-rich SLBs. Using fluorescence recovery after photobleaching (FRAP) we also show that the presence of gangliosides significantly reduces lipid diffusion coefficients in SLBs in a concentration-dependent manner. Finally, using QCM-D and GD1a-rich SLB membranes we measure the binding kinetics of an anti-GD1a antibody that has similarities to a monoclonal antibody that is a hallmark of a variant of Guillain-Barre syndrome.


Sign in / Sign up

Export Citation Format

Share Document