scholarly journals CURRENT TOPICS FOR TEACHING SKELETAL MUSCLE PHYSIOLOGY

2003 ◽  
Vol 27 (4) ◽  
pp. 171-182
Author(s):  
Susan V. Brooks

Contractions of skeletal muscles provide the stability and power for all body movements. Consequently, any impairment in skeletal muscle function results in some degree of instability or immobility. Factors that influence skeletal muscle structure and function are therefore of great interest both scientifically and clinically. Injury, disease, and old age are among the factors that commonly contribute to impairment in skeletal muscle function. The goal of this article is to update current concepts of skeletal muscle physiology. Particular emphasis is placed on mechanisms of injury, repair, and adaptation in skeletal muscle as well as mechanisms underlying the declining skeletal muscle structure and function associated with aging. For additional materials please refer to the “Skeletal Muscle Physiology” presentation located on the American Physiological Society Archive of Teaching Resources Web site ( https://www.lifescitrc.org ).

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Leila Lesanpezeshki ◽  
Hiroshi Qadota ◽  
Masoud Norouzi Darabad ◽  
Karishma Kashyap ◽  
Carla M. R. Lacerda ◽  
...  

Abstract Background Caenorhabditis elegans has been widely used as a model to study muscle structure and function. Its body wall muscle is functionally and structurally similar to vertebrate skeletal muscle with conserved molecular pathways contributing to sarcomere structure, and muscle function. However, a systematic investigation of the relationship between muscle force and sarcomere organization is lacking. Here, we investigate the contribution of various sarcomere proteins and membrane attachment components to muscle structure and function to introduce C. elegans as a model organism to study the genetic basis of muscle strength. Methods We employ two recently developed assays that involve exertion of muscle forces to investigate the correlation of muscle function to sarcomere organization. We utilized a microfluidic pillar-based platform called NemaFlex that quantifies the maximum exertable force and a burrowing assay that challenges the animals to move in three dimensions under a chemical stimulus. We selected 20 mutants with known defects in various substructures of sarcomeres and compared the physiological function of muscle proteins required for force generation and transmission. We also characterized the degree of sarcomere disorganization using immunostaining approaches. Results We find that mutants with genetic defects in thin filaments, thick filaments, and M-lines are generally weaker, and our assays are successful in detecting the functional changes in response to each sarcomere location tested. We find that the NemaFlex and burrowing assays are functionally distinct informing on different aspects of muscle physiology. Specifically, the burrowing assay has a larger bandwidth in phenotyping muscle mutants, because it could pick ten additional mutants impaired while exerting normal muscle force in NemaFlex. This enabled us to combine their readouts to develop an integrated muscle function score that was found to correlate with the score for muscle structure disorganization. Conclusions Our results highlight the suitability of NemaFlex and burrowing assays for evaluating muscle physiology of C. elegans. Using these approaches, we discuss the importance of the studied sarcomere proteins for muscle function and structure. The scoring methodology we have developed enhances the utility of  C. elegans as a genetic model to study muscle function.


2021 ◽  
Author(s):  
Leila Lesanpezeshki ◽  
Hiroshi Qadota ◽  
Masoud Norouzi Darabad ◽  
Karishma Kashyap ◽  
Carla M. R. Lacerda ◽  
...  

AbstractBackgroundCaenorhabditis elegans has been widely used as a model to study muscle structure and function due to many genes having human homologs. Its body wall muscle is functionally and structurally similar to vertebrate skeletal muscle with conserved molecular pathways contributing to sarcomere structure, and muscle function. However, a systematic investigation of the relationship between muscle force and sarcomere organization is lacking. Here, we investigate the contribution of various sarcomere proteins and membrane attachment components to muscle structure and function to introduce C. elegans as a model organism to study the genetic basis of muscle strength.MethodsWe employ two recently developed assays that involve exertion of muscle forces to investigate the correlation of muscle function to sarcomere organization. We utilized a microfluidic pillar-based platform called NemaFlex that quantifies the maximum exertable force and a burrowing assay that challenges the animals to move in three dimensions under a chemical stimulus. We selected 20 mutants with known defects in various substructures of sarcomeres and compared the physiological function of muscle proteins required for force generation and transmission. We also characterized the degree of sarcomere disorganization using immunostaining approaches.ResultsWe find that mutants with genetic defects in thin filaments, thick filaments and M-lines are generally weaker, and our assays are successful in detecting the functional changes in response to each sarcomere location tested. We find that the NemaFlex and burrowing assays are functionally distinct informing on different aspects of muscle physiology. Specifically, the burrowing assay has a larger bandwidth in phenotyping muscle mutants, because it could pick ten additional mutants impaired while exerting normal muscle force in NemaFlex. This enabled us to combine their readouts to develop an integrated muscle function score that was found to correlate with the score for muscle structure disorganization.ConclusionsOur results highlight the suitability of NemaFlex and burrowing assays for evaluating muscle physiology of C. elegans. Using these approaches, we discuss the importance of the studied sarcomere proteins for muscle function and structure. The scoring methodology we have developed lays the foundation for investigating the contribution of conserved sarcomere proteins and membrane attachment components to human muscle function and strength.


2020 ◽  
Vol 118 (3) ◽  
pp. 258a
Author(s):  
Laszlo Csernoch ◽  
Mónika Gönczi ◽  
Zsolt Ráduly ◽  
László Szabó ◽  
Nóra Dobrosi ◽  
...  

2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Viridiana Navarrrete ◽  
Marcos Ayala ◽  
Antonio Rodriguez ◽  
Francisco Villarreal ◽  
Israel Ramirez-Sanchez

2007 ◽  
Vol 101 (6) ◽  
pp. 1236-1243 ◽  
Author(s):  
Simone Dal Corso ◽  
Lara Nápolis ◽  
Carla Malaguti ◽  
Ana Cristina Gimenes ◽  
André Albuquerque ◽  
...  

2010 ◽  
Vol 24 (11) ◽  
pp. 4433-4442 ◽  
Author(s):  
Kate T. Murphy ◽  
René Koopman ◽  
Timur Naim ◽  
Bertrand Léger ◽  
Jennifer Trieu ◽  
...  

2006 ◽  
Vol 97 (3) ◽  
pp. 261-271 ◽  
Author(s):  
Dieter Blottner ◽  
Michele Salanova ◽  
Britta Püttmann ◽  
Gudrun Schiffl ◽  
Dieter Felsenberg ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Manoel Luís Costa

The function of muscle is to contract, which means to exert force on a substrate. The adaptations required for skeletal muscle differentiation, from a prototypic cell, involve specialization of housekeeping cytoskeletal contracting and supporting systems into crystalline arrays of proteins. Here I discuss the changes that all three cytoskeletal systems (microfilaments, intermediate filaments, and microtubules) undergo through myogenesis. I also discuss their interaction, through the membrane, to extracellular matrix and to other cells, where force will be exerted during contraction. The three cytoskeletal systems are necessary for the muscle cell and must exert complementary roles in the cell. Muscle is a responsive system, where structure and function are integrated: the structural adaptations it undergoes depend on force production. In this way, the muscle cytoskeleton is a portrait of its physiology. I review the cytoskeletal proteins and structures involved in muscle function and focus particularly on their role in myogenesis, the process by which this incredible muscle machine is made. Although the focus is on skeletal muscle, some of the discussion is applicable to cardiac and smooth muscle.


Sign in / Sign up

Export Citation Format

Share Document