scholarly journals Adiponectin is expressed by skeletal muscle fibers and influences muscle phenotype and function

2008 ◽  
Vol 295 (1) ◽  
pp. C203-C212 ◽  
Author(s):  
Matthew P. Krause ◽  
Ying Liu ◽  
Vivian Vu ◽  
Lawrence Chan ◽  
Aimin Xu ◽  
...  

Adiponectin (Ad) is linked to various disease states and mediates antidiabetic and anti-inflammatory effects. While it was originally thought that Ad expression was limited to adipocytes, we demonstrate here that Ad is expressed in mouse skeletal muscles and within differentiated L6 myotubes, as assessed by RT-PCR, Western blot, and immunohistochemical analyses. Serial muscle sections stained for fiber type, lipid content, and Ad revealed that muscle fibers with elevated intramyocellular Ad expression were consistently type IIA and IID fibers with detectably higher intramyocellular lipid (IMCL) content. To determine the effect of Ad on muscle phenotype and function, we used an Ad-null [knockout (KO)] mouse model. Body mass increased significantly in 24-wk-old KO mice [+5.5 ± 3% relative to wild-type mice (WT)], with no change in muscle mass observed. IMCL content was significantly increased (+75.1 ± 25%), whereas epididymal fat mass, although elevated, was not different in the KO mice compared with WT (+35.1 ± 23%; P = 0.16). Fiber-type composition was unaltered, although type IIB fiber area was increased in KO mice (+25.5 ± 6%). In situ muscle stimulation revealed lower peak tetanic forces in KO mice relative to WT (−47.5 ± 6%), with no change in low-frequency fatigue rates. These data demonstrate that the absence of Ad expression causes contractile dysfunction and phenotypical changes in skeletal muscle. Furthermore, we demonstrate that Ad is expressed in skeletal muscle and that its intramyocellular localization is associated with elevated IMCL, particularly in type IIA/D fibers.

2011 ◽  
Vol 301 (4) ◽  
pp. R916-R925 ◽  
Author(s):  
Krystyna Banas ◽  
Charlene Clow ◽  
Bernard J. Jasmin ◽  
Jean-Marc Renaud

It has long been suggested that in skeletal muscle, the ATP-sensitive K+ channel (KATP) channel is important in protecting energy levels and that abolishing its activity causes fiber damage and severely impairs function. The responses to a lack of KATP channel activity vary between muscles and fibers, with the severity of the impairment being the highest in the most glycolytic muscle fibers. Furthermore, glycolytic muscle fibers are also expected to face metabolic stress more often than oxidative ones. The objective of this study was to determine whether the t-tubular KATP channel content differs between muscles and fiber types. KATP channel content was estimated using a semiquantitative immunofluorescence approach by staining cross sections from soleus, extensor digitorum longus (EDL), and flexor digitorum brevis (FDB) muscles with anti-Kir6.2 antibody. Fiber types were determined using serial cross sections stained with specific antimyosin I, IIA, IIB, and IIX antibodies. Changes in Kir6.2 content were compared with changes in CaV1.1 content, as this Ca2+ channel is responsible for triggering Ca2+ release from sarcoplasmic reticulum. The Kir6.2 content was the lowest in the oxidative soleus and the highest in the glycolytic EDL and FDB. At the individual fiber level, the Kir6.2 content within a muscle was in the order of type IIB > IIX > IIA ≥ I. Interestingly, the Kir6.2 content for a given fiber type was significantly different between soleus, EDL, and FDB, and highest in FDB. Correlations of relative fluorescence intensities from the Kir6.2 and CaV1.1 antibodies were significant for all three muscles. However, the variability in content between the three muscles or individual fibers was much greater for Kir6.2 than for CaV1.1. It is suggested that the t-tubular KATP channel content increases as the glycolytic capacity increases and as the oxidative capacity decreases and that the expression of KATP channels may be linked to how often muscles/fibers face metabolic stress.


2002 ◽  
Vol 27 (4) ◽  
pp. 423-448 ◽  
Author(s):  
Dirk Pette

Mammalian skeletal muscle fibers display a great adaptive potential. This potential results from the ability of muscle fibers to adjust their molecular, functional, and metabolic properties in response to altered functional demands, such as changes in neuromuscular activity or mechanical loading. Adaptive changes in the expression of myofibrillar and other protein isoforms result in fiber type transitions. These transitions occur in a sequential order and encompass a spectrum of pure and hybrid fibers. Depending on the quality, intensity, and duration of the alterations in functional demand, muscle fibers may undergo functional transitions in the direction of slow or fast, as well as metabolic transitions in the direction of aerobic-oxidative or glycotytic. The maximum range of possible transitions in either direction depends on the fiber phenotype and is determined by its initial location in the fiber spectrum. Key words: Ca-sequestering proteins, energy metabolism, fiber type transition, myofibrillar protein isofonns, myosin, neuromuscular activity


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Kunihiro Sakuma ◽  
Akihiko Yamaguchi

This paper summarizes the various effects of neurotrophins in skeletal muscle and how these proteins act as potential regulators of the maintenance, function, and regeneration of skeletal muscle fibers. Increasing evidence suggests that this family of neurotrophic factors influence not only the survival and function of innervating motoneurons but also the development and differentiation of myoblasts and muscle fibers. Muscle contractions (e.g., exercise) produce BDNF mRNA and protein in skeletal muscle, and the BDNF seems to play a role in enhancing glucose metabolism and may act for myokine to improve various brain disorders (e.g., Alzheimer's disease and major depression). In adults with neuromuscular disorders, variations in neurotrophin expression are found, and the role of neurotrophins under such conditions is beginning to be elucidated. This paper provides a basis for a better understanding of the role of these factors under such pathological conditions and for treatment of human neuromuscular disease.


2018 ◽  
Vol 56 (2) ◽  
pp. 322-331
Author(s):  
Rani S. Sellers ◽  
S. Radma Mahmood ◽  
Geoffrey S. Perumal ◽  
Frank P. Macaluso ◽  
Irwin J. Kurland

Lipin-1 ( Lpin1)–deficient lipodystrophic mice have scant and immature adipocytes and develop transient fatty liver early in life. Unlike normal mice, these mice cannot rely on stored triglycerides to generate adenosine triphosphate (ATP) from the β-oxidation of fatty acids during periods of fasting. To compensate, these mice store much higher amounts of glycogen in skeletal muscle and liver than wild-type mice in order to support energy needs during periods of fasting. Our studies demonstrated that there are phenotypic changes in skeletal muscle fibers that reflect an adaptation to this unique metabolic situation. The phenotype of skeletal muscle (soleus, gastrocnemius, plantaris, and extensor digitorum longus [EDL]) from Lpin1-/- was evaluated using various methods including immunohistochemistry for myosin heavy chains (Myh) 1, 2, 2a, 2b, and 2x; enzyme histochemistry for myosin ATPase, cytochrome-c oxidase (COX), and succinyl dehydrogenase (SDH); periodic acid–Schiff; and transmission electron microscopy. Fiber-type changes in the soleus muscle of Lpin1-/- mice were prominent and included decreased Myh1 expression with concomitant increases in Myh2 expression and myosin-ATPase activity; this change was associated with an increase in the presence of Myh1/2a or Myh1/2x hybrid fibers. Alterations in mitochondrial enzyme activity (COX and SDH) were apparent in the myofibers in the soleus, gastrocnemius, plantaris, and EDL muscles. Electron microscopy revealed increases in the subsarcolemmal mitochondrial mass in the muscles of Lpin1-/- mice. These data demonstrate that lipin-1 deficiency results in phenotypic fiber-specific modulation of skeletal muscle necessary for compensatory fuel utilization adaptations in lipodystrophy.


2005 ◽  
Vol 22 (2) ◽  
pp. 204-212 ◽  
Author(s):  
M. Thabet ◽  
T. Miki ◽  
S. Seino ◽  
J.-M. Renaud

Although it has been suggested that the ATP-sensitive K+ (KATP) channel protects muscle against function impairment, most studies have so far given little evidence for significant perturbation in the integrity and function of skeletal muscle fibers from inactive mice that lack KATP channel activity in their cell membrane. The objective was, therefore, to test the hypothesis that KATP channel-deficient skeletal muscle fibers become damaged when mice are subjected to stress. Wild-type and KATP channel-deficient mice (Kir6.2−/− mice) were subjected to 4–5 wk of treadmill running at either 20 m/min with 0° inclination or at 24 m/min with 20° uphill inclination. Muscles of all wild-type mice and of nonexercised Kir6.2−/− mice had very few fibers with internal nuclei. After 4–5 wk of treadmill running, there was little evidence for connective tissues and mononucleated cells in Kir6.2−/− hindlimb muscles, whereas the number of fibers with internal nuclei, which appear when damaged fibers are regenerated by satellite cells, was significantly higher in Kir6.2−/− than wild-type mice. Between 5% and 25% of the total number of fibers in Kir6.2−/− extensor digitum longus, plantaris, and tibialis muscles had internal nuclei, and most of such fibers were type IIB fibers. Contrary to hindlimb muscles, diaphragms of Kir6.2−/− mice that had run at 24 m/min had few fibers with internal nuclei, but mild to severe fiber damage was observed. In conclusion, the study provides for the first time evidence 1) that the KATP channels of skeletal muscle are essential to prevent fiber damage, and thus muscle dysfunction; and 2) that the extent of fiber damage is greater and the capacity of fiber regeneration is less in Kir6.2−/− diaphragm muscles compared with hindlimb muscles.


2009 ◽  
Vol 96 (3) ◽  
pp. 127a
Author(s):  
M.L. Bang ◽  
M. Caremani ◽  
E. Brunello ◽  
R. Littlefield ◽  
R. Lieber ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Mark W. Pataky ◽  
Haiyan Wang ◽  
Carmen S. Yu ◽  
Edward B. Arias ◽  
Robert J. Ploutz-Snyder ◽  
...  

1997 ◽  
Vol 272 (2) ◽  
pp. C550-C559 ◽  
Author(s):  
E. R. Chin ◽  
C. D. Balnave ◽  
D. G. Allen

We have examined the extent to which prolonged reductions in low-frequency force (i.e., low-frequency fatigue) result from increases in intracellular free Ca2+ concentration ([Ca2+]i) and alterations in muscle metabolites. Force and [Ca2+]i were measured in mammalian single muscle fibers in response to short, intermediate, and long series of tetani that elevated the [Ca2+]i-time integral to 5, 17, and 29 microM x s, respectively. Only the intermediate and long series resulted in prolonged (>60 x min) reductions in Ca2+ release and low-frequency fatigue. When fibers recovered from the long series of tetani without glucose, Ca2+ release was reduced to a greater extent and force was reduced at high and low frequencies. These findings indicate that the decrease in sarcoplasmic reticulum Ca2+ release associated with fatigue has at least two components: 1) a metabolic component, which, in the presence of glucose, recovers within 1 h, and 2) a component dependent on the elevation of the [Ca2+]i-time integral, which recovers more slowly. It is this Ca2+-dependent component that is primarily responsible for low-frequency fatigue.


Sign in / Sign up

Export Citation Format

Share Document