The KATP channel Kir6.2 subunit content is higher in glycolytic than oxidative skeletal muscle fibers

2011 ◽  
Vol 301 (4) ◽  
pp. R916-R925 ◽  
Author(s):  
Krystyna Banas ◽  
Charlene Clow ◽  
Bernard J. Jasmin ◽  
Jean-Marc Renaud

It has long been suggested that in skeletal muscle, the ATP-sensitive K+ channel (KATP) channel is important in protecting energy levels and that abolishing its activity causes fiber damage and severely impairs function. The responses to a lack of KATP channel activity vary between muscles and fibers, with the severity of the impairment being the highest in the most glycolytic muscle fibers. Furthermore, glycolytic muscle fibers are also expected to face metabolic stress more often than oxidative ones. The objective of this study was to determine whether the t-tubular KATP channel content differs between muscles and fiber types. KATP channel content was estimated using a semiquantitative immunofluorescence approach by staining cross sections from soleus, extensor digitorum longus (EDL), and flexor digitorum brevis (FDB) muscles with anti-Kir6.2 antibody. Fiber types were determined using serial cross sections stained with specific antimyosin I, IIA, IIB, and IIX antibodies. Changes in Kir6.2 content were compared with changes in CaV1.1 content, as this Ca2+ channel is responsible for triggering Ca2+ release from sarcoplasmic reticulum. The Kir6.2 content was the lowest in the oxidative soleus and the highest in the glycolytic EDL and FDB. At the individual fiber level, the Kir6.2 content within a muscle was in the order of type IIB > IIX > IIA ≥ I. Interestingly, the Kir6.2 content for a given fiber type was significantly different between soleus, EDL, and FDB, and highest in FDB. Correlations of relative fluorescence intensities from the Kir6.2 and CaV1.1 antibodies were significant for all three muscles. However, the variability in content between the three muscles or individual fibers was much greater for Kir6.2 than for CaV1.1. It is suggested that the t-tubular KATP channel content increases as the glycolytic capacity increases and as the oxidative capacity decreases and that the expression of KATP channels may be linked to how often muscles/fibers face metabolic stress.

1989 ◽  
Vol 66 (6) ◽  
pp. 2717-2720 ◽  
Author(s):  
F. S. Apple ◽  
P. A. Tesch

Individual human muscle fibers from the vastus lateralis were isolated from age-matched endurance-trained and strength-trained athletes and untrained controls. Slow- (ST) and fast-twitch (FT) fibers were assayed for total creatine kinase (CK), CK-MB, total lactate dehydrogenase (LD), the LD isozyme that predominates in the heart muscle of most vertebrates (LD1), and citrate synthase (CS). Regardless of training of the athletes, both CK-MB and CS were higher in ST than in FT fibers. Also, irrespective of fiber type, CK-MB and CS were greatest in the endurance-trained group. A positive correlation existed between CK-MB and CS, relating oxidative capacity of individual fibers with CK-MB. Total CK varied little among the fiber types, trained groups, or controls. Total LD in FT fibers was greater than in ST fibers in all groups, with only ST fibers from the endurance-trained group containing substantial amounts of LD1. These findings suggest that specific training, endurance exercise, causes a favorable metabolic adaptation of CK and LD isozymes at the individual fiber level, allowing for the muscle to cope with increased energy demands during prolonged exercise.


1983 ◽  
Vol 245 (2) ◽  
pp. H265-H275 ◽  
Author(s):  
B. G. Mackie ◽  
R. L. Terjung

Blood flow to fast-twitch red (FTR), fast-twitch white (FTW), and slow-twitch red (STR) muscle fiber sections of the gastrocnemius-plantaris-soleus muscle group was determined using 15 +/- 3-microns microspheres during in situ stimulation in pentobarbital-anesthetized rats. Steady-state blood flows were assessed during the 10th min of contraction using twitch (0.1, 0.5, 1, 3, and 5 Hz) and tetanic (7.5, 15, 30, 60, and 120/min) stimulation conditions. In addition, an earlier blood flow determination was begun at 3 min (twitch series) or at 30 s (tetanic series) of stimulation. Blood flow was highest in the FTR (220-240 ml X min-1 X 100 g-1), intermediate in the STR (140), and lowest in the FTW (70-80) section during tetanic contraction conditions estimated to coincide with the peak aerobic function of each fiber type. These blood flows are fairly proportional to the differences in oxidative capacity among fiber types. Further, their absolute values are similar to those predicted from the relationship between blood flow and oxidative capacity found by others for dog and cat muscles. During low-frequency contraction conditions, initial blood flow to the FTR and STR sections were excessively high and not dependent on contraction frequency. However, blood flows subsequently decreased to values in keeping with the relative energy demands. In contrast, FTW muscle did not exhibit this time-dependent relative hyperemia. Thus, besides the obvious quantitative differences between skeletal muscle fiber types, there are qualitative differences in blood flow response during contractions. Our findings establish that, based on fiber type composition, a heterogeneity in blood flow distribution can occur within a whole muscle during contraction.


2005 ◽  
Vol 25 (15) ◽  
pp. 6629-6638 ◽  
Author(s):  
Misook Oh ◽  
Igor I. Rybkin ◽  
Victoria Copeland ◽  
Michael P. Czubryt ◽  
John M. Shelton ◽  
...  

ABSTRACT Skeletal muscles are a mosaic of slow and fast twitch myofibers. During embryogenesis, patterns of fiber type composition are initiated that change postnatally to meet physiological demand. To examine the role of the protein phosphatase calcineurin in the initiation and maintenance of muscle fiber types, we used a “Flox-ON” approach to obtain muscle-specific overexpression of the modulatory calcineurin-interacting protein 1 (MCIP1/DSCR1), an inhibitor of calcineurin. Myo-Cre transgenic mice with early skeletal muscle-specific expression of Cre recombinase were used to activate the Flox-MCIP1 transgene. Contractile components unique to type 1 slow fibers were absent from skeletal muscle of adult Myo-Cre/Flox-MCIP1 mice, whereas oxidative capacity, myoglobin content, and mitochondrial abundance were unaltered. The soleus muscles of Myo-Cre/Flox-MCIP1 mice fatigued more rapidly than the wild type as a consequence of the replacement of the slow myosin heavy chain MyHC-1 with a fast isoform, MyHC-2A. MyHC-1 expression in Myo-Cre/Flox-MCIP1 embryos and early neonates was normal. These results demonstrate that developmental patterning of slow fibers is independent of calcineurin, while the maintenance of the slow-fiber phenotype in the adult requires calcineurin activity.


1992 ◽  
Vol 40 (6) ◽  
pp. 819-825 ◽  
Author(s):  
B W Rosser ◽  
B J Norris ◽  
P M Nemeth

We studied muscle fibers by quantitative biochemistry to determine whether metabolic capacity varied among fibers of a given type as a function of their anatomic location. Muscles were selected from both contiguous and diverse anatomic regions within the rats studied. The individual fibers, classified into myosin ATPase fiber types by histochemical means, were assessed for fiber diameters and analyzed for the activities of enzymes representing major energy pathways: malate dehydrogenase (MDH, oxidative), lactate dehydrogenase (LDH, glycolytic), and adenylokinase (AK, high-energy phosphate metabolism). We found that neither the average activities of each of the three enzymes nor the fiber diameters varied in Type I or Type IIa fibers selected from superficial to deep portions of the triceps surae of the hindlimb. However, the IIb fibers in the deep region of this muscle group had significantly greater oxidative capacity, less glycolytic capacity, and smaller diameters than the superficially situated IIb fibers. Type IIa fibers in lateral gastrocnemius, extensor digitorum longus, psoas, diaphragm, biceps brachii, superficial masseter, and superior rectus muscles were highly variable in both diameter and enzyme profiles, with a correlation between MDH activity and fiber diameter. Therefore, our results show that both intermuscular and intramuscular metabolic variations exist in muscle fibers of a given type.


1987 ◽  
Vol 104 (4) ◽  
pp. 967-979 ◽  
Author(s):  
DA Schafer ◽  
FE Stockdale

We have identified three sarcolemma-associated antigens, including two antigens that are differentially distributed on skeletal muscle fibers of the fast, fast/slow, and slow types. Monoclonal antibodies were prepared using partially purified membranes of adult chicken skeletal muscles as immunogens and were used to characterize three antigens associated with the sarcolemma of muscle fibers. Immunofluorescence staining of cryosections of adult and embryonic chicken muscles showed that two of the three antigens differed in expression by fibers depending on developmental age and whether the fibers were of the fast, fast/slow, or slow type. Fiber type was assigned by determining the content of fast and slow myosin heavy chain. MSA-55 was expressed equally by fibers of all types. In contrast, MSA-slow and MSA-140 differed in their expression by muscle fibers depending on fiber type. MSA-slow was detected exclusively at the periphery of fast/slow and slow fibers, but was not detected on fast fibers. MSA-140 was detected on all fibers but fast/slow and slow fibers stained more intensely suggesting that these fiber types contain more MSA-140 than fast fibers. These sarcolemma-associated antigens were developmentally regulated in ovo and in vitro. MSA-55 and MSA-140 were detected on all primary muscle fibers by day 8 in ovo of embryonic development, whereas MSA-slow was first detected on muscle fibers just before hatching. Those antigens expressed by fast fibers (MSA-55 and MSA-140) were expressed only after myoblasts differentiated into myotubes, but were not expressed by fibroblasts in cell culture. Each antigen was also detected in one or more nonskeletal muscle cell types: MSA-55 and MSA-slow in cardiac myocytes and smooth muscle of gizzard (but not vascular structures) and MSA-140 in cardiac myocytes and smooth muscle of vascular structures. MSA-55 was identified as an Mr 55,000, nonglycosylated, detergent-soluble protein, and MSA-140 was an Mr 140,000, cell surface protein. The Mr of MSA-slow could not be determined by immunoblotting or immunoprecipitation techniques. These findings indicate that muscle fibers of different physiological function differ in the components associated with the sarcolemma. While the function of these sarcolemma-associated antigens is unknown, their regulated appearance during development in ovo and as myoblasts differentiate in culture suggests that they may be important in the formation, maturation, and function of fast, fast/slow, and slow muscle fibers.


Proteomes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 28
Author(s):  
Britta Eggers ◽  
Karin Schork ◽  
Michael Turewicz ◽  
Katalin Barkovits ◽  
Martin Eisenacher ◽  
...  

Skeletal muscle is a heterogeneous tissue consisting of blood vessels, connective tissue, and muscle fibers. The last are highly adaptive and can change their molecular composition depending on external and internal factors, such as exercise, age, and disease. Thus, examination of the skeletal muscles at the fiber type level is essential to detect potential alterations. Therefore, we established a protocol in which myosin heavy chain isoform immunolabeled muscle fibers were laser microdissected and separately investigated by mass spectrometry to develop advanced proteomic profiles of all murine skeletal muscle fiber types. All data are available via ProteomeXchange with the identifier PXD025359. Our in-depth mass spectrometric analysis revealed unique fiber type protein profiles, confirming fiber type-specific metabolic properties and revealing a more versatile function of type IIx fibers. Furthermore, we found that multiple myopathy-associated proteins were enriched in type I and IIa fibers. To further optimize the assignment of fiber types based on the protein profile, we developed a hypothesis-free machine-learning approach, identified a discriminative peptide panel, and confirmed our panel using a public data set.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jia-ao Yu ◽  
Zhijun Wang ◽  
Xin Yang ◽  
Manting Ma ◽  
Zhenhui Li ◽  
...  

AbstractLong non-coding RNAs (lncRNAs) are well-known to participate in a variety of important regulatory processes in myogenesis. In our previous RNA-seq study (accession number GSE58755), we found that lncRNA-FKBP1C was differentially expressed between White Recessive Rock (WRR) and Xinghua (XH) chicken. Here, we have further demonstrated that lncRNA-FKBP1C interacted directly with MYH1B by biotinylated RNA pull-down assay and RNA immunoprecipitation (RIP). Protein stability and degradation experiments identified that lncRNA-FKBP1C enhanced the protein stability of MYH1B. Overexpression of lncRNA-FKBP1C inhibited myoblasts proliferation, promoted myoblasts differentiation, and participated in the formation of skeletal muscle fibers. LncRNA-FKBP1C could downregulate the fast muscle genes and upregulate slow muscle genes. Conversely, its interference promoted cell proliferation, repressed cell differentiation, and drove the transformation of slow-twitch muscle fibers to fast-twitch muscle fibers. Similar results were observed after knockdown of the MYH1B gene, but the difference was that the MYH1B gene had no effects on fast muscle fibers. In short, these data demonstrate that lncRNA-FKBP1C could bound with MYH1B and enhance its protein stability, thus affecting proliferation, differentiation of myoblasts and conversion of skeletal muscle fiber types.


2020 ◽  
Vol 45 (11) ◽  
pp. 1287-1298 ◽  
Author(s):  
Mélina Bailly ◽  
Natacha Germain ◽  
Léonard Féasson ◽  
Frédéric Costes ◽  
Bruno Estour ◽  
...  

Constitutional thinness (CT) is a nonpathological state of underweight. The current study aimed to explore skeletal muscle energy storage in individuals with CT and to further characterize muscle phenotype at baseline and in response to overfeeding. Thirty subjects with CT (15 females, 15 males) and 31 normal-weight control subjects (16 females, 15 males) participated in the study. Histological and enzymological analyses were performed on muscle biopsy specimens before and after overfeeding. In the skeletal muscle of CT participants compared with controls, we observed a lower content of intramuscular triglycerides for type I (−17%, p < 0.01) and type IIA (−14%, p < 0.05) muscle fibers, a lower glycogen content for type I (−6%, p < 0.01) and type IIA (−5%, p < 0.05) muscle fibers, a specific fiber-type distribution, a marked muscle hypotrophy (−20%, p < 0.001), a low capillary-to-fiber ratio (−19%, p < 0.001), and low citrate synthase activity (−18%, p < 0.05). In response to overfeeding, CT participants increased their intramuscular triglycerides content in type I (+10%, p < 0.01) and type IIA (+9%, p < 0.01) muscle fibers. CT individuals seem to present an unusual muscle phenotype and different adaptations to overfeeding compared with normal-weight individuals, suggesting a specific energy metabolism and muscle adaptations. ClinicalTrials.gov registration no. NCT02004821. Novelty Low intramuscular triglycerides and glycogen content in skeletal muscle of constitutionally thin individuals. Low oxidative capacity, low capillary supply, and fiber hypotrophy in skeletal muscle of constitutionally thin individuals. Increase in intramuscular triglycerides in constitutional thinness in response to overfeeding.


2001 ◽  
Vol 90 (3) ◽  
pp. 1119-1124 ◽  
Author(s):  
Dirk Pette

More than 40 years ago, the nerve cross-union experiment of Buller, Eccles, and Eccles provided compelling evidence for the essential role of innervation in determining the properties of mammalian skeletal muscle fibers. Moreover, this experiment revealed that terminally differentiated muscle fibers are not inalterable but are highly versatile entities capable of changing their phenotype from fast to slow or slow to fast. With the use of various experimental models, numerous studies have since confirmed and extended the notion of muscle plasticity. Together, these studies demonstrated that motoneuron-specific impulse patterns, neuromuscular activity, and mechanical loading play important roles in both the maintenance and transition of muscle fiber phenotypes. Depending on the type, intensity, and duration of changes in any of these factors, muscle fibers adjust their phenotype to meet the altered functional demands. Fiber-type transitions resulting from multiple qualitative and quantitative changes in gene expression occur sequentially in a regular order within a spectrum of pure and hybrid fiber types.


Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 77
Author(s):  
Daniela D’Amico ◽  
Roberto Fiore ◽  
Daniela Caporossi ◽  
Valentina Di Felice ◽  
Francesco Cappello ◽  
...  

Skeletal muscle is a plastic and complex tissue, rich in proteins that are subject to continuous rearrangements. Skeletal muscle homeostasis can be affected by different types of stresses, including physical activity, a physiological stressor able to stimulate a robust increase in different heat shock proteins (HSPs). The modulation of these proteins appears to be fundamental in facilitating the cellular remodeling processes related to the phenomenon of training adaptations such as hypertrophy, increased oxidative capacity, and mitochondrial activity. Among the HSPs, a special attention needs to be devoted to Hsp60 and αB-crystallin (CRYAB), proteins constitutively expressed in the skeletal muscle, where their specific features could be highly relevant in understanding the impact of different volumes of training regimes on myofiber types and in explaining the complex picture of exercise-induced mechanical strain and damaging conditions on fiber population. This knowledge could lead to a better personalization of training protocols with an optimal non-harmful workload in populations of individuals with different needs and healthy status. Here, we introduce for the first time to the reader these peculiar HSPs from the perspective of exercise response, highlighting the control of their expression, biological function, and specific distribution within skeletal muscle fiber-types.


Sign in / Sign up

Export Citation Format

Share Document