Genistein stimulates electrogenic Cl− secretion via phosphodiesterase modulation in the mouse jejunum

2009 ◽  
Vol 297 (3) ◽  
pp. C688-C698 ◽  
Author(s):  
Pin-Chun Chao ◽  
Kirk L. Hamilton

Previously, we demonstrated that genistein stimulated Cl− secretion in the mouse jejunum (Baker MJ and Hamilton KL, Am J Physiol Cell Physiol 287: C1636–C1645, 2004); however, the mode of action of genistein still remains unclear. Here, we examined the activation of Cl− secretion by the modulation of phosphodiesterases (PDEs) by genistein (75 μM) in the mouse jejunum with the Ussing short-circuit current ( Isc) technique. Drugs tested included theophylline (10 mM), a nonspecific PDE inhibitor; 8-methoxymethyl-3-isobutyl-1-methylxanthine (8-MM-IBMX; 100 μM), erythro-9-(2-hydroxyl-3-nonyl)-adenine (EHNA; 40 μM), milrinone (100 μM), and rolipram (40 and 100 μM), which are specific inhibitors of PDE1–PDE4, respectively. Theophylline stimulated a bumetanide-sensitive Isc, indicative of Cl− secretion, and abolished genistein's stimulatory action on Isc. Neither 8-MM-IBMX nor EHNA altered the basal Isc nor did these PDE inhibitors affect the stimulatory action of genistein on the Isc of the mouse jejunum. Rolipram had no effect on basal Isc, but it reduced the genistein-stimulated Isc compared with time-matched control tissues. Milrinone stimulated a concentration-dependent increase in Isc. Bumetanide (10 μM) inhibited 60 ± 4% of milrinone-induced Isc. Pretreating tissues with milrinone prevented genistein from stimulating Isc, and pretreatment with genistein reduced the effect of milrinone on Isc. H89 (50 μM), a PKA inhibitor, reduced the milrinone-stimulated Isc. Likewise, H89 reduced the genistein-stimulated Isc. Here, we demonstrate, for the first time, that genistein activates Cl− secretion of the mouse jejunum via inhibition of a PDE3-dependent pathway.

1992 ◽  
Vol 262 (1) ◽  
pp. C15-C22 ◽  
Author(s):  
U. Kachintorn ◽  
P. Vongkovit ◽  
M. Vajanaphanich ◽  
S. Dinh ◽  
K. E. Barrett ◽  
...  

Ca(2+)-dependent secretagogues (e.g., carbachol, histamine, ionomycin, and 4-bromo-A23187) have relatively transient effects on chloride secretion, even if there is a sustained increase in cytosolic calcium ([Ca2+]i) (as for the ionophores). Because these agents increase both [Ca2+]i and protein kinase C (PKC) activity, chloride secretion might be stimulated by [Ca2+]i and terminated by PKC activity. We tested the effect of a PKC activator, phorbol 12-myristate 13-acetate (PMA), on Cl- secretion by T84 cell monolayers by measuring short-circuit current (Isc). PMA alone had no effect on Isc but potentiated increases in Isc when added 10 min or less before Ca(2+)-dependent secretagogues. Chelation of [Ca2+]i with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid inhibited the increases both in [Ca2+]i and Isc induced by carbachol with or without brief PMA pretreatment. Longer preincubations with PMA inhibited Isc responses to Ca(2+)-dependent secretagogues, even when increased [Ca2+]i was sustained by ionophores. Inhibitors of PKC could reverse the inhibitory effect of PMA but did not reverse the potentiating effect. The effects of PMA on Cl- secretion were reproduced by 1,2-dioctanoyl-sn-glycerol and were mirrored by effects on K+ channel opening. Thus PMA has dual effects on chloride secretion. Initially, it exerts a stimulatory action and subsequently an inhibitory action. The stimulatory effect only occurs if Ca(2+)-dependent secretion is ongoing. The inhibitory effect of PMA is mediated by PKC and cannot be overcome by increasing [Ca2+]i.


1991 ◽  
Vol 261 (2) ◽  
pp. L188-L194 ◽  
Author(s):  
P. I. Plews ◽  
Z. A. Abdel-Malek ◽  
C. A. Doupnik ◽  
G. D. Leikauf

The endothelins (ET) are a group of isopeptides produced by a number of cells, including canine tracheal epithelial cells. Because these compounds are endogenous peptides that may activate eicosanoid metabolism, we investigated the effects of ET on Cl secretion in canine tracheal epithelium. Endothelin 1 (ET-1) was found to produce a dose-dependent change in short-circuit current (Isc) that increased slowly and reached a maximal value within 10-15 min. When isopeptides of ET were compared, 300 nM ET-1 and ET-2 produced comparable maximal increases in Isc, whereas ET-3 produced smaller changes in Isc (half-maximal concentrations of 2.2, 7.2, and 10.4 nM, respectively). Ionic substitution of Cl with nontransported anions, iodide and gluconate, reduced ET-1-induced changes in Isc. Furthermore, the response was inhibited by the NaCl cotransport inhibitor, furosemide. In paired tissues, ET-1 significantly increased mucosal net 36Cl flux without significant effect on 22Na flux. The increase in Isc induced by ET was diminished by pretreatment with indomethacin. The second messengers mediating the increase in Isc were investigated in cultured canine tracheal epithelial cells. ET-1 stimulated the release of [3H]arachidonate from membrane phospholipids, increased intracellular Ca2+ (occasionally producing oscillations), and increased adenosine 3',5'-cyclic monophosphate accumulation. The latter was diminished by indomethacin. Thus ET is a potent agonist of Cl secretion (with the isopeptides having the following potency: ET-1 greater than or equal to ET-2 greater than ET-3) and acts, in part, through a cyclooxygenase-dependent mechanism.


1994 ◽  
Vol 188 (1) ◽  
pp. 205-216 ◽  
Author(s):  
T Uesaka ◽  
K Yano ◽  
M Yamasaki ◽  
K Nagashima ◽  
M Ando

Four somatostatin-related peptides were isolated from eel guts. Two of them were the same as eel SS-25II (eSS-25II) and eel SS-25I (eSS-25I) isolated from European eel pancreas. The remaining two peptides were C-terminal tetradecapeptides (eSS-14II and eSS-14I) of eSS-25II and eSS-25I, respectively. These four peptides all enhanced the serosa-negative transepithelial potential difference and short-circuit current across the seawater eel intestine after pretreatment with isobutylmethylxanthine, serotonin (5-HT) and methacholine, an agonist of acetylcholine (ACh). Among these peptides, eSS-25II was the most potent enhancer, followed by eSS-25I and eSS-14II. Since the large peptide (eSS-25II) acts at a lower concentration than the small somatostatin (eSS-14II), the 11 N-terminal amino acid residues seem to potentiate somatostatin action in the eel intestine. In contrast, eSS-14II was more potent than mammalian SS-14, indicating that the three amino acid residues (Tyr18, Gly21, Pro22) in the C-terminal portion also contribute to the potency of somatostatin. Endogenous somatostatin (eSS-25II) activated net Na+, Cl- and water fluxes across the seawater eel intestine. This stimulatory action was not inhibited by tetrodotoxin or yohimbine, an adrenergic antagonist, indicating that eSS-25II does not act through neuronal firing or through catecholamine release. Thus, eel somatostatins may act directly on the enterocytes, but on a distinct receptor from that for adrenaline, to antagonize the inhibition of NaCl and water absorption by 5-HT and ACh in the seawater eel intestine.


1993 ◽  
Vol 264 (6) ◽  
pp. C1388-C1394 ◽  
Author(s):  
A. Y. Leung ◽  
H. L. Tai ◽  
P. Y. Wong

A study was carried out to investigate an ATP-sensitive Ca2+ pool in rat epididymal cells and its role in transepithelial Cl- secretion. In normal buffered solution containing 2.5 mM free Ca2+, ATP triggered single calcium spikes in a dose-dependent fashion. In nominally Ca(2+)-free solution, the peaks of successive Ca2+ spikes diminished after repeated ATP stimulations. Addition of Sr2+ (2.5 mM) to Ca(2+)-free solution after ATP stimulation did not cause changes in fluorescence signals. However, in the presence of Sr2+, ATP gave rise to apparent repetitive Ca2+ spikes of similar magnitudes after repeated stimulations. Increasing the time of exposure in Ca(2+)-free solution containing 50 microM ethylene glycol-bis(beta-amino-ethyl ether)-N,N,N',N'-tetraacetic acid rapidly decreased the intracellular Ca2+ concentration ([Ca2+]i) response to subsequent ATP stimulation. On the other hand, increasing the time of exposure in Sr(2+)-containing solution in Ca(2+)-depleted cells rapidly increased the apparent [Ca2+]i response to subsequent ATP stimulation. These observations suggested the existence of a Ca2+ pool that was rapidly exchanging with the extracellular compartment. Apical application of ATP elicited a transient rise in short-circuit current across the epididymal epithelium in a dose-dependent fashion, and the response was reduced by prior stimulation with thapsigargin. Ca2+ released from a rapidly exchanging ATP-sensitive store might stimulate Cl- secretion in the epididymis, thereby maintaining the electrolyte contents and fluidity of the epididymal microenvironment.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 943
Author(s):  
Nowshad Amin ◽  
Mohammad Rezaul Karim ◽  
Zeid Abdullah ALOthman

In this paper, optical losses in CdS/CdTe solar cells are calculated on the basis of the designated reflective index of various frontal layers using an OPAL2 calculator for the first time. Two types of glass (0.1 mm ultra-thin Schott and 1.1 mm standard borosilicate glass) were assumed to be coated by different Transparent-Conducting-Oxides (TCOs) such as SnO2:F, ZnO:Al, and ITO forming frontal layers for CdS/CdTe solar cells in superstrate configuration. Absorption, reflectance, transmittance, and consequently optical bandgap energies are calculated as a function of common thicknesses, used in the literature. The results show that an increase in TCO thickness led to a decrease in optical band gap as well as an enhancement in contact potential difference, which can deteriorate device performance. The optimum thickness of 100 nm for SnO2:F was calculated, while 200 nm for ZnO:Al and ITO show reasonable optical losses caused by reflections at the interfaces’ and the layer’s absorption. It is seen that 80 to 150 nm CdS on ITO might be an effective range to satisfy a high short circuit current and low defect densities at the CdS/CdTe interface. Finally, a minimum 2 μm thickness for the CdTe on the ultra-thin Schott glass coated by optimum layers can result in the highest short circuit current of 28.69 mA/cm2. This work offers a practical equivalent strategy to be applied for any superstrate solar cells containing TCO and CdS frontal layers.


2005 ◽  
Vol 288 (5) ◽  
pp. G956-G963 ◽  
Author(s):  
Kazi Mirajul Hoque ◽  
Vazhaikkurichi M. Rajendran ◽  
Henry J. Binder

Zn, an essential micronutrient and second most abundant trace element in cell and tissues, reduces stool output when administered to children with acute diarrhea. The mechanism by which Zn improves diarrhea is not known but could result from stimulating Na absorption and/or inhibiting anion secretion. The aim of this study was to investigate the direct effect of Zn on intestinal epithelial ion absorption and secretion. Rat ileum was partially stripped of serosal and muscle layers, and the mucosa was mounted in lucite chambers. Potential difference and short-circuit current were measured by conventional current-voltage clamp method.86Rb efflux and uptake were assessed for serosal K channel and Na-K-2Cl cotransport activity, respectively. Efflux experiments were performed in isolated cells preloaded with86Rb in the presence of ouabain and bumetanide, whereas uptake experiments were performed in low-Cl isotonic buffer containing Ba and ouabain. Neither mucosal nor serosal Zn affected glucose-stimulated Na absorption. In contrast, forskolin-induced Cl secretion was markedly reduced by serosal but not mucosal addition of Zn. Zn also substantially reversed the increase in Cl secretion induced by 8-bromoadenosine 3′,5′-cyclic monophosphate (8-BrcAMP) with half-maximal inhibitory concentration of 0.43 mM. In contrast, serosal Zn did not alter Cl secretion stimulated by carbachol, a Ca-dependent agonist. Zn inhibited 8-BrcAMP-stimulated86Rb efflux but not carbachol-stimulated86Rb efflux. Zn had no effect on bumetanide-sensitive86Rb uptake, Na-K-ATPase, or CFTR. We conclude from these studies that Zn inhibits cAMP-induced Cl secretion by blocking basolateral membrane K channels.


1990 ◽  
Vol 259 (6) ◽  
pp. L459-L467 ◽  
Author(s):  
G. J. Tessier ◽  
T. R. Traynor ◽  
M. S. Kannan ◽  
S. M. O3'Grady

Equine tracheal epithelium, stripped of serosal muscle, mounted in Ussing chambers, and bathed in plasmalike Ringer solution generates a serosa-positive transepithelial potential of 10–22 mV and a short-circuit current (Isc) of 70–200 microA/cm2. Mucosal amiloride (10 microM) causes a 40–60% decrease in Isc and inhibits the net transepithelial Na flux by 95%. Substitution of Cl with gluconate resulted in a 30% decrease in basal Isc. Bicarbonate substitution with 20 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid decreased the Isc by 21%. The Cl-dependent Isc was inhibited by serosal addition of 1 mM amiloride. Bicarbonate replacement or serosal amiloride (1 mM) inhibits the net Cl flux by 72 and 69%, respectively. Bicarbonate replacement significantly reduces the effects of serosal amiloride (1 mM) on Isc, indicating its effect is HCO3 dependent. Addition of 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP; 100 microM) causes a 40% increase in Isc. This effect is inhibited by subsequent addition of 10 microM serosal bumetanide. Bumetanide (10 microM) reduces net Cl secretion following stimulation with 8-BrcAMP (100 microM). Serosal addition of BaCl2 (1 mM) causes a reduction in Isc equal to that following Cl replacement in the presence or absence of 100 microM cAMP. These results suggest that 1) Na absorption depends on amiloride-inhibitable Na channels in the apical membrane, 2) Cl influx across the basolateral membrane occurs by both a Na-H/Cl-HCO3 parallel exchange mechanism under basal conditions and by a bumetanide-sensitive Na-(K?)-Cl cotransport system under cAMP-stimulated conditions, and 3) basal and cAMP-stimulated Cl secretion depends on Ba-sensitive K channels in the basolateral membrane.


1991 ◽  
Vol 260 (5) ◽  
pp. G703-G710 ◽  
Author(s):  
B. R. Grubb

In the fowl cecum in vitro, the influence of glucose and the three most prevalent naturally occurring volatile fatty acids (acetate, propionate, butyrate) on short-circuit current (Isc), electrical resistance, and transport of Na and Cl was determined. When glucose, acetate, or butyrate was present, ion transport was characterized by electrogenic Na absorption, greater than 65% of which was amiloride inhibitable, and Cl secretion, which also was electrogenic. Isc could be completely accounted for by net fluxes of Na and Cl. When glucose, acetate, or butyrate (10 mM both sides) was included in the incubation medium, cecal tissue maintained its Isc and a constant rate of net Na absorption and Cl secretion for a 5-h period. When no substrate was present or propionate was included in the medium, a marked fall in Isc and net Na and Cl fluxes was seen. Glucose caused an increase in Isc when added only to the serosal side. As 3-O-methylglucose (not metabolized) was not effective in stimulating Isc of the cecum (serosal or mucosal addition), it appeared that glucose increased Isc by acting as an energy substrate for active Na transport. Acetate and butyrate appeared to be equally effective in stimulating Na transport and Isc when placed on either side of the membrane. When the preparation was supplied with glucose (serosal side) and acetate was added to the mucosal side, no further stimulation of Isc occurred. Thus it appeared that acetate and butyrate were acting as substrates for active Na transport rather than stimulating Na transport by some other mechanism such as a cotransport with Na.(ABSTRACT TRUNCATED AT 250 WORDS)


1993 ◽  
Vol 264 (2) ◽  
pp. G252-G260 ◽  
Author(s):  
V. Calderaro ◽  
E. Chiosi ◽  
R. Greco ◽  
A. M. Spina ◽  
A. Giovane ◽  
...  

Effects of Ca2+ on adenosine 3',5'-cyclic monophosphate (cAMP)-mediated Cl- secretion were investigated in intact mucosa and isolated crypt cells of rabbit descending colon. Addition of 10 microM prostaglandin (PG)E2 or forskolin to tissues incubated in Ca(2+)-free medium increased the size of short-circuit current (Isc) and Cl- secretion as estimated by unidirectional 36Cl flux measurements (net flux = -2.31 +/- 0.24 vs. -1.22 +/- 0.10 mueq.h-1.cm-2, n = 4, P < 0.001). Addition of 10 microM PGE2 to tissues incubated in 1.2 mM Ca2+ Ringer induced a 7-fold increase in mean cAMP level, whereas it produced an 11-fold increase in tissues exposed to Ca(2+)-free medium. Membrane preparations from whole mucosa incubated in Ca(2+)-free medium displayed a cyclic nucleotide phosphodiesterase activity significantly lower than controls (18.76 +/- 0.54 vs. 31.20 +/- 0.39 pmol cAMP. mg protein-1.min-1, means +/- SE, n = 4, P < 0.001). Ca2+ removal also affected adenylate cyclase (AC) responsiveness to agonists; AC activity increased in controls by 54 and 226% after stimulation with 10 microM PGE2 and forskolin, respectively, but it increased more (77 and 325%, respectively) after incubation in Ca(2+)-free solutions.(ABSTRACT TRUNCATED AT 250 WORDS)


1997 ◽  
Vol 273 (1) ◽  
pp. C148-C160 ◽  
Author(s):  
R. W. Freel ◽  
M. Hatch ◽  
N. D. Vaziri

The ability of a Cl-secreting epithelium to support net secretion of an anion other than a halide was investigated with 35SO4 flux measurements across the isolated, short-circuited rabbit distal colon. In most experiments, 36Cl fluxes were simultaneously measured to validate the secretory capacity of the tissues. Serosal addition of dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP, 0.5 mM) stimulated a sustained net secretion of SO4 (about -3.0 nmol.cm-2.h-1 from a 0.20 mM solution) via an increase in the serosal-to-mucosal unidirectional flux, whereas Ca ionophore A-23187 (1 microM, serosal) produced a more transient stimulation of SO4 and Cl secretion. Net adenosine 3',5'-cyclic monophosphate (cAMP)-dependent SO4 and Cl secretion were strongly voltage sensitive, principally through the potential dependence of the serosal-to-mucosal fluxes, indicating an electrogenic transport process. Symmetrical replacement of either Na, K, or Cl inhibited cAMP-dependent SO4 secretion, whereas HCO3-free buffers had no effect on SO4 secretion. Serosal bumetanide (50 microM) or furosemide (100 microM) reduced DBcAMP-stimulated SO4 and Cl secretion, whereas serosal 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid or 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (50 microM) blocked DBcAMP-induced SO4 secretion while enhancing net Cl secretion and short-circuit current. Mucosal 5-nitro-2-(3-phenylpropylamino)benzoic acid partially inhibited SO4 secretion and completely inhibited Cl secretion. It is concluded that secretagogue-stimulated SO4 secretion, like Cl secretion, may be an electrogenic process mediated by diffusive efflux through an apical anion conductance. Cellular accumulation of SO4 across the basolateral membrane appears to be achieved by a mechanism that is distinct from that employed by Cl.


Sign in / Sign up

Export Citation Format

Share Document