scholarly journals Inhibition of glycosaminoglycan synthesis and protein glycosylation with WAS-406 and azaserine result in reduced islet amyloid formation in vitro

2007 ◽  
Vol 293 (5) ◽  
pp. C1586-C1593 ◽  
Author(s):  
Rebecca L. Hull ◽  
Sakeneh Zraika ◽  
Jayalakshmi Udayasankar ◽  
Robert Kisilevsky ◽  
Walter A. Szarek ◽  
...  

Deposition of islet amyloid polypeptide (IAPP) as amyloid in the pancreatic islet occurs in ∼90% of individuals with Type 2 diabetes and is associated with decreased islet β-cell mass and function. Human IAPP (hIAPP), but not rodent IAPP, is amyloidogenic and toxic to islet β-cells. In addition to IAPP, islet amyloid deposits contain other components, including heparan sulfate proteoglycans (HSPGs). The small molecule 2-acetamido-1,3,6-tri- O-acetyl-2,4-dideoxy-α-d- xylo-hexopyranose (WAS-406) inhibits HSPG synthesis in hepatocytes and blocks systemic amyloid A deposition in vivo. To determine whether WAS-406 inhibits localized amyloid formation in the islet, we incubated hIAPP transgenic mouse islets for up to 7 days in 16.7 mM glucose (conditions that result in amyloid deposition) plus increasing concentrations of the inhibitor. WAS-406 at doses of 0, 10, 100, and 1,000 μM resulted in a dose-dependent decrease in amyloid deposition (% islet area occupied by amyloid: 0.66 ± 0.14%, 0.10 ± 0.06%, 0.09 ± 0.07%, and 0.004 ± 0.003%, P < 0.001) and an increase in β-cell area in hIAPP transgenic islets (55.0 ± 2.6 vs. 60.6 ± 2.2% islet area for 0 vs. 100 μM inhibitor, P = 0.05). Glycosaminoglycan, including heparan sulfate, synthesis was inhibited in both hIAPP transgenic and nontransgenic islets (the latter is a control that does not develop amyloid), while O-linked protein glycosylation was also decreased, and WAS-406 treatment tended to decrease islet viability in nontransgenic islets. Azaserine, an inhibitor of the rate-limiting step of the hexosamine biosynthesis pathway, replicated the effects of WAS-406, resulting in reduction of O-linked protein glycosylation and glycosaminoglycan synthesis and inhibition of islet amyloid formation. In summary, interventions that decrease both glycosaminoglycan synthesis and O-linked protein glycosylation are effective in reducing islet amyloid formation, but their utility as pharmacological agents may be limited due to adverse effects on the islet.

2013 ◽  
Vol 305 (4) ◽  
pp. E475-E484 ◽  
Author(s):  
Kathryn Aston-Mourney ◽  
Shoba L. Subramanian ◽  
Sakeneh Zraika ◽  
Thanya Samarasekera ◽  
Daniel T. Meier ◽  
...  

The dipeptidyl peptidase-4 (DPP-4) inhibitor sitagliptin is an attractive therapy for diabetes, as it increases insulin release and may preserve β-cell mass. However, sitagliptin also increases β-cell release of human islet amyloid polypeptide (hIAPP), the peptide component of islet amyloid, which is cosecreted with insulin. Thus, sitagliptin treatment may promote islet amyloid formation and its associated β-cell toxicity. Conversely, metformin treatment decreases islet amyloid formation by decreasing β-cell secretory demand and could therefore offset sitagliptin's potential proamyloidogenic effects. Sitagliptin treatment has also been reported to be detrimental to the exocrine pancreas. We investigated whether long-term sitagliptin treatment, alone or with metformin, increased islet amyloid deposition and β-cell toxicity and induced pancreatic ductal proliferation, pancreatitis, and/or pancreatic metaplasia/neoplasia. hIAPP transgenic and nontransgenic littermates were followed for 1 yr on no treatment, sitagliptin, metformin, or the combination. Islet amyloid deposition, β-cell mass, insulin release, and measures of exocrine pancreas pathology were determined. Relative to untreated mice, sitagliptin treatment did not increase amyloid deposition, despite increasing hIAPP release, and prevented amyloid-induced β-cell loss. Metformin treatment alone or with sitagliptin decreased islet amyloid deposition to a similar extent vs untreated mice. Ductal proliferation was not altered among treatment groups, and no evidence of pancreatitis, ductal metaplasia, or neoplasia were observed. Therefore, long-term sitagliptin treatment stimulates β-cell secretion without increasing amyloid formation and protects against amyloid-induced β-cell loss. This suggests a novel effect of sitagliptin to protect the β-cell in type 2 diabetes that appears to occur without adverse effects on the exocrine pancreas.


2005 ◽  
Vol 289 (4) ◽  
pp. E703-E709 ◽  
Author(s):  
Rebecca L. Hull ◽  
Melissah R. Watts ◽  
Keiichi Kodama ◽  
Zhen-ping Shen ◽  
Kristina M. Utzschneider ◽  
...  

Genetic background is important in determining susceptibility to metabolic abnormalities such as insulin resistance and β-cell dysfunction. Islet amyloid is associated with reduced β-cell mass and function and develops in the majority of our C57BL/6J × DBA/2J (F1) male human islet amyloid polypeptide (hIAPP) transgenic mice after 1 yr of increased fat feeding. To determine the relative contribution of each parental strain, C57BL/6J (BL6) and DBA/2J (DBA2), to islet amyloid formation, we studied male hIAPP mice on each background strain (BL6, n = 13; and DBA2 n = 11) and C57BL/6J × DBA/2J F1mice ( n = 17) on a 9% (wt/wt) fat diet for 1 yr. At the end of 12 mo, islet amyloid deposition was quantified from thioflavin S-stained pancreas sections. The majority of mice in all groups developed islet amyloid (BL6: 91%, F1: 76%, DBA2: 100%). However, the prevalence (%amyloid-positive islets; BL6: 14 ± 3%, F1: 44 ± 8%, DBA2: 49 ± 9%, P < 0.05) and severity (%islet area occupied by amyloid; BL6: 0.03 ± 0.01%, F1: 9.2 ± 2.9%, DBA2: 5.7 ± 2.3%, p ≤ 0.01) were significantly lower in BL6 than F1and DBA2 mice. Increased islet amyloid severity was negatively correlated with insulin-positive area per islet, in F1( r2= 0.75, P < 0.001) and DBA2 ( r2= 0.87, P < 0.001) mice but not BL6 mice ( r2= 0.07). In summary, the extent of islet amyloid formation in hIAPP transgenic mice is determined by background strain, with mice expressing DBA/2J genes (F1and DBA2 mice) being more susceptible to amyloid deposition that replaces β-cell mass. These findings underscore the importance of genetic and environmental factors in studying metabolic disease.


2019 ◽  
Vol 32 (2) ◽  
pp. 95-102
Author(s):  
Andrew T Templin ◽  
Mahnaz Mellati ◽  
Raija Soininen ◽  
Meghan F Hogan ◽  
Nathalie Esser ◽  
...  

Abstract Islet amyloid is a pathologic feature of type 2 diabetes (T2D) that is associated with β-cell loss and dysfunction. These amyloid deposits form via aggregation of the β-cell secretory product islet amyloid polypeptide (IAPP) and contain other molecules including the heparan sulfate proteoglycan perlecan. Perlecan has been shown to bind amyloidogenic human IAPP (hIAPP) via its heparan sulfate glycosaminoglycan (HS GAG) chains and to enhance hIAPP aggregation in vitro. We postulated that reducing the HS GAG content of perlecan would also decrease islet amyloid deposition in vivo. hIAPP transgenic mice were crossed with Hspg2Δ3/Δ3 mice harboring a perlecan mutation that prevents HS GAG attachment (hIAPP;Hspg2Δ3/Δ3), and male offspring from this cross were fed a high fat diet for 12 months to induce islet amyloid deposition. At the end of the study body weight, islet amyloid area, β-cell area, glucose tolerance and insulin secretion were analyzed. hIAPP;Hspg2Δ3/Δ3 mice exhibited significantly less islet amyloid deposition and greater β-cell area compared to hIAPP mice expressing wild type perlecan. hIAPP;Hspg2Δ3/Δ3 mice also gained significantly less weight than other genotypes. When adjusted for differences in body weight using multiple linear regression modeling, we found no differences in islet amyloid deposition or β-cell area between hIAPP transgenic and hIAPP;Hspg2Δ3/Δ3 mice. We conclude that loss of perlecan exon 3 reduces islet amyloid deposition in vivo through indirect effects on body weight and possibly also through direct effects on hIAPP aggregation. Both of these mechanisms may promote maintenance of glucose homeostasis in the setting of T2D.


2021 ◽  
Vol 8 ◽  
Author(s):  
Mikkel Christensen ◽  
Nils A. Berglund ◽  
Birgit Schiøtt

Islet amyloid polypeptide (IAPP) is a proposed cause of the decreased beta-cell mass in patients with type-II diabetes. The molecular composition of the cell-membrane is important for regulating IAPP cytotoxicity and aggregation. Cholesterol is present at high concentrations in the pancreatic beta-cells, and in-vitro experiments have indicated that it affects the amyloid formation of IAPP either by direct interactions or by changing the properties of the membrane. In this study we apply atomistic, unbiased molecular dynamics simulations at a microsecond timescale to investigate the effect of cholesterol on membrane bound IAPP. Simulations were performed with various combinations of cholesterol, phosphatidylcholine (PC) and phosphatidylserine (PS) lipids. In all simulations, the helical structure of monomer IAPP was stabilized by the membrane. We found that cholesterol decreased the insertion depth of IAPP compared to pure phospholipid membranes, while PS lipids counteract the effect of cholesterol. The aggregation propensity has previously been proposed to correlate with the insertion depth of IAPP, which we found to decrease with the increased ordering of the lipids induced by cholesterol. Cholesterol is depleted in the vicinity of IAPP, and thus our results suggest that the effect of cholesterol is indirect.


2017 ◽  
Vol 59 (3) ◽  
pp. R121-R140 ◽  
Author(s):  
Daniel Raleigh ◽  
Xiaoxue Zhang ◽  
Benoît Hastoy ◽  
Anne Clark

Islet amyloid polypeptide (IAPP) forms cytotoxic oligomers and amyloid fibrils in islets in type 2 diabetes (T2DM). The causal factors for amyloid formation are largely unknown. Mechanisms of molecular folding and assembly of human IAPP (hIAPP) into β-sheets, oligomers and fibrils have been assessed by detailed biophysical studies of hIAPP and non-fibrillogenic, rodent IAPP (rIAPP); cytotoxicity is associated with the early phases (oligomers/multimers) of fibrillogenesis. Interaction with synthetic membranes promotes β-sheet assembly possibly via a transient α-helical molecular conformation. Cellular hIAPP cytotoxicity can be activated from intracellular or extracellular sites. In transgenic rodents overexpressing hIAPP, intracellular pro-apoptotic signals can be generated at different points in β-cell protein synthesis. Increased cellular trafficking of proIAPP, failure of the unfolded protein response (UPR) or excess trafficking of misfolded peptide via the degradation pathways can induce apoptosis; these data indicate that defects in intracellular handling of hIAPP can induce cytotoxicity. However, there is no evidence for IAPP overexpression in T2DM. Extracellular amyloidosis is directly related to the degree of β-cell apoptosis in islets in T2DM. IAPP fragments, fibrils and multimers interact with membranes causing disruption in vivo and in vitro. These findings support a role for extracellular IAPP in β-sheet conformation in cytotoxicity. Inhibitors of fibrillogenesis are useful tools to determine the aberrant mechanisms that result in hIAPP molecular refolding and islet amyloidosis. However, currently, their role as therapeutic agents remains uncertain.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Marija Mucibabic ◽  
Pär Steneberg ◽  
Emmelie Lidh ◽  
Jurate Straseviciene ◽  
Agnieszka Ziolkowska ◽  
...  

AbstractType 2 diabetes (T2D), alike Parkinson’s disease (PD), belongs to the group of protein misfolding diseases (PMDs), which share aggregation of misfolded proteins as a hallmark. Although the major aggregating peptide in β-cells of T2D patients is Islet Amyloid Polypeptide (IAPP), alpha-synuclein (αSyn), the aggregating peptide in substantia nigra neurons of PD patients, is expressed also in β-cells. Here we show that αSyn, encoded by Snca, is a component of amyloid extracted from pancreas of transgenic mice overexpressing human IAPP (denoted hIAPPtg mice) and from islets of T2D individuals. Notably, αSyn dose-dependently promoted IAPP fibril formation in vitro and tail-vein injection of αSyn in hIAPPtg mice enhanced β-cell amyloid formation in vivo whereas β-cell amyloid formation was reduced in hIAPPtg mice on a Snca −/− background. Taken together, our findings provide evidence that αSyn and IAPP co-aggregate both in vitro and in vivo, suggesting a role for αSyn in β-cell amyloid formation.


1995 ◽  
Vol 1 (5) ◽  
pp. 542-553 ◽  
Author(s):  
Gunilla Westermark ◽  
Michelle Benig Arora ◽  
Niles Fox ◽  
Raymond Carroll ◽  
Shu Jin Chan ◽  
...  

2021 ◽  
Author(s):  
Shreya Ghosh ◽  
Akansha Garg ◽  
Chayanika Kala ◽  
Ashwani Kumar Thakur

AbstractThe formation of granuloma is one of the characteristic feature of tuberculosis. Besides, rise in the concentration of acute phase response proteins mainly serum amyloid A is the indicator for chronic inflammation associated with tuberculosis. Serum amyloid A drives secondary amyloidosis in tuberculosis and other chronic inflammatory conditions. The linkage between serum amyloid A (SAA) protein and amyloid deposition site is not well understood in tuberculosis and other chronic inflammatory conditions. We hypothesized that granuloma could be a potential site for amyloid deposition because of the presence of serum amyloid A protein and proteases that cleave SAA and trigger amyloid formation. Based on this hypothesis, for the first time we have shown the presence of amyloid deposits in the granuloma of tuberculosis patients using the gold standard, Congo red dye staining.


2015 ◽  
Vol 172 (4) ◽  
pp. R131-R141 ◽  
Author(s):  
Raquel Barrio

Cystic fibrosis (CF) is a recessive genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR).CFTRis primarily present in epithelial cells of the airways, intestine and in cells with exocrine and endocrine functions. Mutations in the gene encoding the channel protein complex (CFTR) cause alterations in the ionic composition of secretions from the lung, gastrointestinal tract, liver, and also the pancreas. CF-related diabetes (CFRD), the most common complication of CF, has a major detrimental impact on pulmonary function, nutrition and survival. Glucose derangements in CF seem to start from early infancy and, even when the pathophysiology is multifactorial, insulin insufficiency is clearly a major component. Consistently, recent evidence has confirmed that CFTR is an important regulator of insulin secretion by islet β-cells. In addition, several other mechanisms were also recognized from cellular and animals models also contributing to either β-cell mass reduction or β-cell malfunction. Understanding such mechanisms is crucial for the development of the so-called ‘transformational’ therapies in CF, including the preservation of insulin secretion. Innovative therapeutic approaches aim to modify specific CFTR mutant proteins or positively modulate their function. CFTR modulators have recently shownin vitrocapacity to enhance insulin secretion and thereby potential clinical utility in CFDR, including synergistic effects between corrector and potentiator drugs. The introduction of incretins and the optimization of exocrine pancreatic replacement complete the number of therapeutic options of CFRD besides early diagnosis and implementation of insulin therapy. This review focuses on the recently identified pathogenic mechanisms leading to CFRD relevant for the development of novel pharmacological avenues in CFRD therapy.


2008 ◽  
Vol 8 (2_suppl) ◽  
pp. S19-S25 ◽  
Author(s):  
Baptist Gallwitz

The clinical course of type 2 diabetes mellitus is characterised by a progressive decline in β -cell mass. The changing β-cell mass reflects a shifting balance between β-cell neogenesis, islet neogenesis and β-cell apoptosis. In persons with diabetes, administration of exogenous glucagon-like peptide-1 (GLP-1) improves glucose sensitivity and insulin synthesis and may help increase β cell mass. As the effects of GLP-1 on the β cell are becoming better understood at both the molecular and cellular levels, it has become possible to develop therapies with the potential to harness and sustain the positive effects of endogenous GLP-1 in patients with type 2 diabetes. Data from in vitro, preclinical and phase II studies show promising results with GLP-1 analogues in improving β-cell function in patients with type 2 diabetes. For example, in vitro models have shown the GLP-1 analogue liraglutide inhibits β-cell apoptosis in isolated neonatal rat islets. In vitro, animal models demonstrate increasing β-cell mass with liraglutide administration. Results from a recently completed phase II clinical trial with liraglutide in patients with type 2 diabetes demonstrate that daily treatment markedly improves β -cell function as shown by an increased first-phase insulin response and secretory capacity and a decreased proinsulin:insulin ratio. Now, phase III trials continue to bear out the potential for liraglutide for treatment of patients with type 2 diabetes.Br J Diabetes Vasc Dis 2008;8 (Suppl 2): S19-S25


Sign in / Sign up

Export Citation Format

Share Document