ATP regulates anion channel-mediated organic osmolyte release from cultured rat astrocytes via multiple Ca2+-sensitive mechanisms

2005 ◽  
Vol 288 (1) ◽  
pp. C204-C213 ◽  
Author(s):  
Alexander A. Mongin ◽  
Harold K. Kimelberg

Ubiquitously expressed volume-regulated anion channels (VRACs) are activated in response to cell swelling but may also show limited activity in nonswollen cells. VRACs are permeable to inorganic anions and small organic osmolytes, including the amino acids aspartate, glutamate, and taurine. Several recent reports have demonstrated that neurotransmitters or hormones, such as ATP and vasopressin, induce or strongly potentiate astrocytic whole cell Cl− currents and amino acid release, which are inhibited by VRAC blockers. In the present study, we explored the intracellular signaling mechanisms mediating the effects of ATP on d-[3H]aspartate release via the putative VRAC pathway in rat primary astrocyte cultures. Cells were exposed to moderate (5%) or substantial (30%) reductions in medium osmolarity. ATP strongly potentiated d-[3H]aspartate release in both moderately swollen and substantially swollen cells. These ATP effects were blocked (≥80% inhibition) by intracellular Ca2+ chelation with BAPTA-AM, calmodulin inhibitors, or a combination of the inhibitors of protein kinase C (PKC) and calmodulin-dependent kinase II (CaMK II). In contrast, control d-[3H]aspartate release activated by the substantial hyposmotic swelling showed little (≤25% inhibition) sensitivity to the same pharmacological agents. These data indicate that ATP regulates VRAC activity via two separate Ca2+-sensitive signaling cascades involving PKC and CaMK II and that cell swelling per se activates VRACs via a separate Ca2+/calmodulin-independent signaling mechanism. Ca2+-dependent organic osmolyte release via VRACs may contribute to the physiological functions of these channels in the brain, including astrocyte-to-neuron intercellular communication.


1994 ◽  
Vol 267 (5) ◽  
pp. C1203-C1209 ◽  
Author(s):  
P. S. Jackson ◽  
R. Morrison ◽  
K. Strange

Efflux of intracellular organic osmolytes to the external medium is a ubiquitous response to cell swelling. Accumulating evidence indicates that volume regulatory loss of structurally unrelated organic osmolytes from cells is mediated by a relatively nonselective volume-sensitive anion channel. In C6 cells, we have termed this channel VSOAC for volume-sensitive organic osmolyte-anion channel. Swelling-induced activation of VSOAC required the presence of ATP or nonhydrolyzable ATP analogues [adenosine 5'-O-(3-thiotriphosphate), adenylylmethyl-enediphosphonate (AMP-PCP), or 5'-adenylylimidodiphosphate] in the patch pipette. Sustained activation of VSOAC also required ATP. Channel rundown was observed when cellular ATP levels were lowered by intracellular dialysis with the patch pipette solution. Rundown was prevented by the ATP analogue AMP-PCP. Passive swelling-induced myo-[3H]inositol and [3H]taurine efflux was blocked by metabolic inhibitors that decreased cellular ATP levels. Titration of cellular ATP levels with azide demonstrated that the apparent dissociation constant (Kd) for ATP of both myo-inositol and taurine efflux was approximately 1.7 mM. The high Kd for ATP indicates that cellular metabolic state plays an important role in modulating organic osmolyte loss. Regulation of VSOAC activity by ATP prevents depletion of metabolically expensive organic osmolytes when cellular energy production is reduced. In addition, ATP-dependent regulation provides essential feedback to minimize the loss of energy-producing carbon sources such as pyruvate, short-chain fatty acids, ketone bodies, and amino acids, which readily permeate this channel.



1997 ◽  
Vol 272 (6) ◽  
pp. C1766-C1775 ◽  
Author(s):  
F. Emma ◽  
M. McManus ◽  
K. Strange

Regulation of the volume sensitivity of the swelling-activated organic osmolyte/anion channel VSOAC by intracellular electrolytes was examined in intact and patch-clamped C6 glioma cells. In intact cells, VSOAC activation was monitored by [3H]taurine efflux measurements, and intracellular electrolyte concentrations were manipulated by acclimation to hypertonic medium for varying periods of time. Hypertonic shrinkage was followed by a rapid and complete regulatory volume increase mediated by electrolyte accumulation that elevated intracellular Na+, K+, and Cl- concentrations. During prolonged (4-48 h) exposure to hypertonicity, electrolyte concentrations decreased gradually as cells accumulated the organic osmolyte myo-inositol. VSOAC activation induced by cell swelling of 35-40% increased as a function of the time of exposure to hypertonicity and was inversely correlated with measured intracellular Na+, K+ and Cl- levels. In patch-clamped cells, swelling-induced Cl- current activation was unaffected by acclimation conditions but was inhibited by increasing the concentration of electrolytes in the patch pipette solution. Quantification of the relationship between VSOAC activation and cell swelling demonstrated that increases in intracellular electrolyte levels increase VSOAC volume set point. Regulation of VSOAC volume sensitivity by electrolytes allows cells to selectively utilize electrolytes or a combination of electrolytes and organic osmolytes for regulatory volume decrease (RVD). Control over the type of solute used for volume regulation is advantageous, allowing cells to control intracellular ionic composition and prevent increases in cytoplasmic ionic strength during RVD.



2019 ◽  
Vol 400 (11) ◽  
pp. 1481-1496 ◽  
Author(s):  
Lingye Chen ◽  
Benjamin König ◽  
Tianbao Liu ◽  
Sumaira Pervaiz ◽  
Yasmin S. Razzaque ◽  
...  

Abstract The volume-regulated anion channel (VRAC) is a key player in the volume regulation of vertebrate cells. This ubiquitously expressed channel opens upon osmotic cell swelling and potentially other cues and releases chloride and organic osmolytes, which contributes to regulatory volume decrease (RVD). A plethora of studies have proposed a wide range of physiological roles for VRAC beyond volume regulation including cell proliferation, differentiation and migration, apoptosis, intercellular communication by direct release of signaling molecules and by supporting the exocytosis of insulin. VRAC was additionally implicated in pathological states such as cancer therapy resistance and excitotoxicity under ischemic conditions. Following extensive investigations, 5 years ago leucine-rich repeat-containing family 8 (LRRC8) heteromers containing LRRC8A were identified as the pore-forming components of VRAC. Since then, molecular biological approaches have allowed further insight into the biophysical properties and structure of VRAC. Heterologous expression, siRNA-mediated downregulation and genome editing in cells, as well as the use of animal models have enabled the assessment of the proposed physiological roles, together with the identification of new functions including spermatogenesis and the uptake of antibiotics and platinum-based cancer drugs. This review discusses the recent molecular biological insights into the physiology of VRAC in relation to its previously proposed roles.



2019 ◽  
Vol 317 (3) ◽  
pp. C466-C480 ◽  
Author(s):  
Yani Liu ◽  
Huiran Zhang ◽  
Hongchao Men ◽  
Yuwei Du ◽  
Ziqian Xiao ◽  
...  

The swelling-activated chloride current ( ICl,swell) is induced when a cell swells and plays a central role in maintaining cell volume in response to osmotic stress. The major contributor of ICl,swell is the volume-regulated anion channel (VRAC). Leucine-rich repeat containing 8A (LRRC8A; SWELL1) was recently identified as an essential component of VRAC, but the mechanisms of VRAC activation are still largely unknown; moreover, other Cl− channels, such as anoctamin 1 (ANO1), were also suggested to contribute to ICl,swell. In this present study, we investigated the roles of LRRC8A and ANO1 in activation of ICl,swell; we also explored the role of intracellular Ca2+ in ICl,swell activation. We used a CRISPR/Cas9 gene editing approach, electrophysiology, live fluorescent imaging, selective pharmacology, and other approaches to show that both LRRC8A and ANO1 can be activated by cell swelling in HEK293 cells. Yet, both channels contribute biophysically and pharmacologically distinct components to ICl,swell, with LRRC8A being the major component. Cell swelling induced oscillatory Ca2+ transients, and these Ca2+ signals were required to activate both the LRRC8A- and ANO1-dependent components of ICl,swell. Both ICl,swell components required localized rather than global Ca2+ for activation. Interestingly, while intracellular Ca2+ was necessary and sufficient to activate ANO1, it was necessary but not sufficient to activate LRRC8A-mediated currents. Finally, Ca2+ transients linked to the ICl,swell activation were mediated by the G protein-coupled receptor-independent PLC isoforms.



1999 ◽  
Vol 277 (4) ◽  
pp. C823-C832 ◽  
Author(s):  
Alexander A. Mongin ◽  
Zhaohui Cai ◽  
Harold K. Kimelberg

Cell swelling results in regulatory activation of multiple conductive anion pathways permeable toward a broad spectrum of intracellular organic osmolytes. Here, we explore the involvement of extracellular and intracellular Ca2+ in volume-dependent [3H]taurine efflux from primary cultured astrocytes and compare the Ca2+ sensitivity of this efflux in slow (high K+ medium induced) and fast (hyposmotic medium induced) cell swelling. Neither Ca2+-free medium nor Ca2+-channel blockers prevented the volume-dependent [3H]taurine release. In contrast, loading cells with the membrane-permeable Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane- N, N, N′, N′-tetraacetic acid (BAPTA)-AM suppressed [3H]taurine efflux by 65–70% and 25–30% under high-K+ and hyposmotic conditions, respectively. Fura 2 measurements confirmed that BAPTA-AM, but not Ca2+-free media, significantly reduced resting intracellular Ca2+concentration ([Ca2+]i). The calmodulin antagonists trifluoperazine and fluphenazine reversibly and irreversibly, respectively, inhibited the high-K+-induced [3H]taurine release, consistent with their known actions on calmodulin. In hyposmotic conditions, the effects were less pronounced. These data suggest that volume-dependent taurine release requires minimal basal [Ca2+]iand involves calmodulin-dependent step(s). Quantitative differences in Ca2+/calmodulin sensitivity of high-K+-induced and hyposmotic medium-induced taurine efflux are due to both the effects of the inhibitors on high-K+-induced cell swelling and their effects on transport systems and/or signaling mechanisms determining taurine efflux.



1993 ◽  
Vol 265 (6) ◽  
pp. C1489-C1500 ◽  
Author(s):  
P. S. Jackson ◽  
K. Strange

C6 glioma cells accumulate the organic osmolyte inositol in response to chronic hypertonic stress. Upon return to isotonic conditions, cell swelling activates a Na(+)-independent passive low-affinity inositol efflux mechanism that is inhibited 80-100% by a number of anion transport blockers, certain lipoxygenase blockers, and various polyunsaturated fatty acids. Taurine efflux is also enhanced by cell swelling. The taurine efflux pathway has characteristics that are identical to those of the inositol efflux mechanism, including kinetics of activation and inactivation, osmotic sensitivity, pharmacological sensitivity, and inhibition by certain Na+ and Cl- substitutes. These results suggest strongly that volume-sensitive inositol and taurine efflux are mediated by a common transport mechanism. The inhibition of the transport pathway by anion transport blockers and unsaturated fatty acids suggests indirectly that efflux of these solutes may be mediated by an anion channel. Whole cell patch clamp measurements in CsCl solutions were used to test this hypothesis. Under hypertonic conditions, C6 cells had an extremely low membrane conductance (approximately 0.02 nS/pF). After cell swelling, however, whole cell anion conductance was activated rapidly to values up to 1.5-2 nS/pF. This conductance was outwardly rectified and selective for anions and was inhibited 80-100% by blockers of swelling-activated inositol and taurine efflux. The relative taurine permeability (i.e., Ptaurine/PCl) of the conductance was 0.20. Isosmotic replacement of raffinose in the external medium with inositol or sorbitol induced a transient inward current, suggesting that Cl- and these polyols compete for common binding sites on the channel. We conclude that a volume-sensitive anion channel mediates the efflux of structurally diverse organic osmolytes such as taurine and inositol from the cell.



2022 ◽  
Author(s):  
Maria Stefania Brignone ◽  
Angela Lanciotti ◽  
Antonio Michelucci ◽  
Cinzia Mallozzi ◽  
Serena Camerini ◽  
...  

Abstract MLC1 is a membrane protein highly expressed by brain perivascular astrocytes. Mutations in the MLC1 gene account for megalencephalic leukoencephalopathy with subcortical cysts (MLC), an incurable leukodystrophy characterized by macrocephaly, brain edema and cysts, myelin vacuolation and astrocyte swelling, causing cognitive and motor dysfunctions. It has been demonstrated that MLC1 mutations affect the swelling-activated Cl - currents (I Cl,swell ) mediated by volume-regulated anion channel (VRAC) and the consequent regulatory volume decrease (RVD) and lead to abnormal activation of intracellular signaling pathways linked to inflammation/osmotic stress. Despite this knowledge, the MLC1 physiological role and MLC molecular pathogenesis are still elusive. Following the observations that Ca 2+ regulates all the MLC1-modulated processes and that intracellular Ca 2+ homeostasis is altered in MLC1-defective cells, we applied a multidisciplinary approach including biochemistry, molecular biology, video imaging, electrophysiology and proteomic techniques on cultured astrocytes to uncover new Ca 2+ -dependent signaling pathways controlling MLC1 function. Here, we revealed that MLC1 binds the Ca 2+ effector proteins calmodulin (CaM) and Ca 2+ /CaM-dependent protein kinase II (CaMKII) and, as result, changes its assembly, localization and functional properties in response to Ca 2+ changes. Noteworthy, CaM binding to the COOH terminal promotes MLC1 trafficking to the plasma membrane, while CaMKII phosphorylation of the NH 2 -terminal potentiates MLC1 activation of I Cl,swell . Overall, these results revealed that MLC1 is a Ca 2+ -regulated protein linking VRAC function and, possibly, volume regulation to Ca 2+ signaling in astrocytes. These findings open new avenues of investigations aimed at clarifying the abnormal molecular pathways underlying MLC and other diseases characterized by astrocyte swelling and brain edema.



2007 ◽  
Vol 18 (6) ◽  
pp. 2002-2012 ◽  
Author(s):  
Brian J. Hawkins ◽  
Muniswamy Madesh ◽  
C. J. Kirkpatrick ◽  
Aron B. Fisher

Reactive oxygen species (ROS) have been implicated in both cell signaling and pathology. A major source of ROS in endothelial cells is NADPH oxidase, which generates superoxide (O2.−) on the extracellular side of the plasma membrane but can result in intracellular signaling. To study possible transmembrane flux of O2.−, pulmonary microvascular endothelial cells were preloaded with the O2.−-sensitive fluorophore hydroethidine (HE). Application of an extracellular bolus of O2.−resulted in rapid and concentration-dependent transient HE oxidation that was followed by a progressive and nonreversible increase in nuclear HE fluorescence. These fluorescence changes were inhibited by superoxide dismutase (SOD), the anion channel blocker DIDS, and selective silencing of the chloride channel-3 (ClC-3) by treatment with siRNA. Extracellular O2.−triggered Ca2+release in turn triggered mitochondrial membrane potential alterations that were followed by mitochondrial O2.−production and cellular apoptosis. These “signaling” effects of O2.−were prevented by DIDS treatment, by depletion of intracellular Ca2+stores with thapsigargin and by chelation of intracellular Ca2+. This study demonstrates that O2.−flux across the endothelial cell plasma membrane occurs through ClC-3 channels and induces intracellular Ca2+release, which activates mitochondrial O2.−generation.



2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Tunyu Jian ◽  
Niuniu Yang ◽  
Yan Yang ◽  
Chan Zhu ◽  
Xiaolin Yuan ◽  
...  

Histamine H4 receptor has been confirmed to play a role in evoking peripheral pruritus. However, the ionic and intracellular signaling mechanism of activation of H4 receptor on the dorsal root ganglion (DRG) neurons is still unknown. By using cell culture and calcium imaging, we studied the underlying mechanism of activation of H4 receptor on the DRG neuron. Immepip dihydrobromide (immepip)—a histamine H4 receptor special agonist under cutaneous injection—obviously induced itch behavior of mice. Immepip-induced scratching behavior could be blocked by TRPV1 antagonist AMG9810 and PLC pathway inhibitor U73122. Application of immepip (8.3–50 μM) could also induce a dose-dependent increase in intracellular Ca2+(Ca2+i) of DRG neurons. We found that 77.8% of the immepip-sensitized DRG neurons respond to the TRPV1 selective agonist capsaicin. U73122 could inhibit immepip-induced Ca2+responses. In addition, immepip-inducedCa2+iincrease could be blocked by ruthenium red, capsazepine, and AMG9810; however it could not be blocked by TRPA1 antagonist HC-030031. These results indicate that TRPV1 but not TRPA1 is the important ion channel to induce the DRG neurons’ responses in the downstream signaling pathway of histamine H4 receptor and suggest that TRPV1 may be involved in the mechanism of histamine-induced itch response by H4 receptor activation.



2015 ◽  
Vol 396 (9-10) ◽  
pp. 975-990 ◽  
Author(s):  
Tobias Stauber

Abstract Cellular volume regulation is fundamental for numerous physiological processes. The volume-regulated anion channel, VRAC, plays a crucial role in regulatory volume decrease. This channel, which is ubiquitously expressed in vertebrates, has been vastly characterized by electrophysiological means. It opens upon cell swelling and conducts chloride and arguably organic osmolytes. VRAC has been proposed to be critically involved in various cellular and organismal functions, including cell proliferation and migration, apoptosis, transepithelial transport, swelling-induced exocytosis and intercellular communication. It may also play a role in pathological states like cancer and ischemia. Despite many efforts, the molecular identity of VRAC had remained elusive for decades, until the recent discovery of heteromers of LRRC8A with other LRRC8 family members as an essential VRAC component. This identification marks a starting point for studies on the structure-function relation, for molecular biological investigations of its cell biology and for re-evaluating the physiological roles of VRAC. This review recapitulates the identification of LRRC8 heteromers as VRAC components, depicts the similarities between LRRC8 proteins and pannexins, and discussed whether VRAC conducts larger osmolytes. Furthermore, proposed physiological functions of VRAC and the present knowledge about the physiological significance of LRRC8 proteins are summarized and collated.



Sign in / Sign up

Export Citation Format

Share Document