scholarly journals Volume-regulated Cl− current: contributions of distinct Cl− channels and localized Ca2+ signals

2019 ◽  
Vol 317 (3) ◽  
pp. C466-C480 ◽  
Author(s):  
Yani Liu ◽  
Huiran Zhang ◽  
Hongchao Men ◽  
Yuwei Du ◽  
Ziqian Xiao ◽  
...  

The swelling-activated chloride current ( ICl,swell) is induced when a cell swells and plays a central role in maintaining cell volume in response to osmotic stress. The major contributor of ICl,swell is the volume-regulated anion channel (VRAC). Leucine-rich repeat containing 8A (LRRC8A; SWELL1) was recently identified as an essential component of VRAC, but the mechanisms of VRAC activation are still largely unknown; moreover, other Cl− channels, such as anoctamin 1 (ANO1), were also suggested to contribute to ICl,swell. In this present study, we investigated the roles of LRRC8A and ANO1 in activation of ICl,swell; we also explored the role of intracellular Ca2+ in ICl,swell activation. We used a CRISPR/Cas9 gene editing approach, electrophysiology, live fluorescent imaging, selective pharmacology, and other approaches to show that both LRRC8A and ANO1 can be activated by cell swelling in HEK293 cells. Yet, both channels contribute biophysically and pharmacologically distinct components to ICl,swell, with LRRC8A being the major component. Cell swelling induced oscillatory Ca2+ transients, and these Ca2+ signals were required to activate both the LRRC8A- and ANO1-dependent components of ICl,swell. Both ICl,swell components required localized rather than global Ca2+ for activation. Interestingly, while intracellular Ca2+ was necessary and sufficient to activate ANO1, it was necessary but not sufficient to activate LRRC8A-mediated currents. Finally, Ca2+ transients linked to the ICl,swell activation were mediated by the G protein-coupled receptor-independent PLC isoforms.

Author(s):  
Raquel Centeio ◽  
Jiraporn Ousingsawat ◽  
Rainer Schreiber ◽  
Karl Kunzelmann

All vertebrate cells activate Cl– currents (ICl,swell) when swollen by hypotonic bath solution. The volume-regulated anion channel VRAC has now been identified as LRRC8/SWELL1. However, apart from VRAC, the Ca2+-activated Cl– channel (CaCC) TMEM16A and the phospholipid scramblase and ion channel TMEM16F were suggested to contribute to cell swelling-activated whole-cell currents. Cell swelling was shown to induce Ca2+ release from the endoplasmic reticulum and to cause subsequent Ca2+ influx. It is suggested that TMEM16A/F support intracellular Ca2+ signaling and thus Ca2+-dependent activation of VRAC. In the present study, we tried to clarify the contribution of TMEM16A to ICl,swell. In HEK293 cells coexpressing LRRC8A and LRRC8C, we found that activation of ICl,swell by hypotonic bath solution (Hypo; 200 mosm/l) was Ca2+ dependent. TMEM16A augmented the activation of LRRC8A/C by enhancing swelling-induced local intracellular Ca2+ concentrations. In HT29 cells, knockdown of endogenous TMEM16A attenuated ICl,swell and changed time-independent swelling-activated currents to VRAC-typical time-dependent currents. Activation of ICl,swell by Hypo was attenuated by blocking receptors for inositol trisphosphate and ryanodine (IP3R; RyR), as well as by inhibiting Ca2+ influx. The data suggest that TMEM16A contributes directly to ICl,swell as it is activated through swelling-induced Ca2+ increase. As activation of VRAC is shown to be Ca2+-dependent, TMEM16A augments VRAC currents by facilitating Hypo-induced Ca2+ increase in submembraneous signaling compartments by means of ER tethering.


2010 ◽  
Vol 298 (2) ◽  
pp. L210-L231 ◽  
Author(s):  
Robert J. Lee ◽  
J. Kevin Foskett

The serous acini of airway submucosal glands are important for fluid secretion in the lung. Serous cells are also sites of expression of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel. However, the mechanisms of serous cell fluid secretion remain poorly defined. In this study, serous acinar cells were isolated from porcine bronchi and studied using optical techniques previously used to examine fluid secretion in rat parotid and murine nasal acinar cells. When stimulated with the cholinergic agonist carbachol, porcine serous cells shrank by ∼20% (observed via DIC microscopy) after a profound elevation of intracellular [Ca2+] ([Ca2+]i; measured by simultaneous fura 2 fluorescence imaging). Upon removal of agonist and relaxation of [Ca2+]i to resting levels, cells swelled back to resting volume. Similar results were observed during stimulation with histamine and ATP, and elevation of [Ca2+]i was found to be necessary and sufficient to activate shrinkage. Cell volume changes were associated with changes in [Cl−]i (measured using SPQ fluorescence), suggesting that shrinkage and swelling are caused by loss and gain of intracellular solute content, respectively, likely reflecting changes in the secretory state of the cells. Shrinkage was inhibited by niflumic acid but not by GlyH-101, suggesting Ca2+-activated secretion is mediated by alternative non-CFTR Cl− channels, possibly including Ano1 (TMEM16A), expressed on the apical membrane of porcine serous cells. Optimal cell swelling/solute uptake required activity of the Na+K+2Cl− cotransporter and Na+/H+ exchanger, both of which are expressed on the basolateral membrane of serous acini and likely contribute to sustaining transepithelial secretion.


2005 ◽  
Vol 125 (2) ◽  
pp. 113-125 ◽  
Author(s):  
Jerod Denton ◽  
Keith Nehrke ◽  
Xiaoyan Yin ◽  
Rebecca Morrison ◽  
Kevin Strange

CLH-3b is a Caenorhabditis elegans ClC anion channel that is expressed in the worm oocyte. The channel is activated during oocyte meiotic maturation and in response to cell swelling by serine/threonine dephosphorylation events mediated by the type 1 phosphatases GLC-7α and GLC-7β. We have now identified a new member of the Ste20 kinase superfamily, GCK-3, that interacts with the CLH-3b COOH terminus via a specific binding motif. GCK-3 inhibits CLH-3b in a phosphorylation-dependent manner when the two proteins are coexpressed in HEK293 cells. clh-3 and gck-3 are expressed predominantly in the C. elegans oocyte and the fluid-secreting excretory cell. Knockdown of gck-3 expression constitutively activates CLH-3b in nonmaturing worm oocytes. We conclude that GCK-3 functions in cell cycle– and cell volume–regulated signaling pathways that control CLH-3b activity. GCK-3 inactivates CLH-3b by phosphorylating the channel and/or associated regulatory proteins. Our studies provide new insight into physiologically relevant signaling pathways that control ClC channel activity and suggest novel mechanisms for coupling cell volume changes to cell cycle events and for coordinately regulating ion channels and transporters that control cellular Cl− content, cell volume, and epithelial fluid secretion.


2007 ◽  
Vol 130 (5) ◽  
pp. 513-524 ◽  
Author(s):  
Li-Ting Chien ◽  
H. Criss Hartzell

Mutations in the human bestrophin-1 (hBest1) gene are responsible for Best vitelliform macular dystrophy, however the mechanisms leading to retinal degeneration have not yet been determined because the function of the bestrophin protein is not fully understood. Bestrophins have been proposed to comprise a new family of Cl− channels that are activated by Ca2+. While the regulation of bestrophin currents has focused on intracellular Ca2+, little is known about other pathways/mechanisms that may also regulate bestrophin currents. Here we show that Cl− currents in Drosophila S2 cells, that we have previously shown are mediated by bestrophins, are dually regulated by Ca2+ and cell volume. The bestrophin Cl− currents were activated in a dose-dependent manner by osmotic pressure differences between the internal and external solutions. The increase in the current was accompanied by cell swelling. The volume-regulated Cl− current was abolished by treating cells with each of four different RNAi constructs that reduced dBest1 expression. The volume-regulated current was rescued by transfecting with dBest1. Furthermore, cells not expressing dBest1 were severely depressed in their ability to regulate their cell volume. Volume regulation and Ca2+ regulation can occur independently of one another: the volume-regulated current was activated in the complete absence of Ca2+ and the Ca2+-activated current was activated independently of alterations in cell volume. These two pathways of bestrophin channel activation can interact; intracellular Ca2+ potentiates the magnitude of the current activated by changes in cell volume. We conclude that in addition to being regulated by intracellular Ca2+, Drosophila bestrophins are also novel members of the volume-regulated anion channel (VRAC) family that are necessary for cell volume homeostasis.


2008 ◽  
Vol 132 (5) ◽  
pp. 537-546 ◽  
Author(s):  
Li-Ting Chien ◽  
H. Criss Hartzell

Mutations in human bestrophin-1 are linked to various kinds of retinal degeneration. Although it has been proposed that bestrophins are Ca2+-activated Cl− channels, definitive proof is lacking partly because mice with the bestrophin-1 gene deleted have normal Ca2+-activated Cl− currents. Here, we provide compelling evidence to support the idea that bestrophin-1 is the pore-forming subunit of a cell volume-regulated anion channel (VRAC) in Drosophila S2 cells. VRAC was abolished by treatment with RNAi to Drosophila bestrophin-1. VRAC was rescued by overexpressing bestrophin-1 mutants with altered biophysical properties and responsiveness to sulfhydryl reagents. In particular, the ionic selectivity of the F81C mutant changed from anionic to cationic when the channel was treated with the sulfhydryl reagent, sodium (2-sulfonatoethyl) methanethiosulfonate (MTSES−) (PCs/PCl = 0.25 for native and 2.38 for F81C). The F81E mutant was 1.3 times more permeable to Cs+ than Cl−. The finding that VRAC was rescued by F81C and F81E mutants with different biophysical properties shows that bestrophin-1 is a VRAC in S2 cells and not simply a regulator or an auxiliary subunit. F81C overexpressed in HEK293 cells also exhibits a shift of ionic selectivity after MTSES− treatment, although the effect is quantitatively smaller than in S2 cells. To test whether bestrophins are VRACs in mammalian cells, we compared VRACs in peritoneal macrophages from wild-type mice and mice with both bestrophin-1 and bestrophin-2 disrupted (best1−/−/best2−/−). VRACs were identical in wild-type and best1−/−/best2−/− mice, showing that bestrophins are unlikely to be the classical VRAC in mammalian cells.


2011 ◽  
Vol 392 (1-2) ◽  
Author(s):  
Karl Kunzelmann ◽  
Patthara Kongsuphol ◽  
Krongkarn Chootip ◽  
Caio Toledo ◽  
Joana R. Martins ◽  
...  

Abstract Two families of proteins, the bestrophins (Best) and the recently cloned TMEM16 proteins (anoctamin, Ano), recapitulate properties of Ca2+-activated Cl- currents. Best1 is strongly expressed in the retinal pigment epithelium and could have a function as a Ca2+-activated Cl- channel as well as a regulator of Ca2+ signaling. It is also present at much lower levels in other cell types including epithelial cells, where it regulates plasma membrane localized Cl- channels by controlling intracellular Ca2+ levels. Best1 interacts with important Ca2+-signaling proteins such as STIM1 and can interact directly with other Ca2+-activated Cl- channels such as TMEM16A. Best1 is detected in the endoplasmic reticulum (ER) where it shapes the dynamic ER structure and regulates cell proliferation, which could be important for renal cystogenesis. Ca2+-activated Cl- channels of the anoctamin family (TMEM16A) show biophysical and pharmacological properties that are typical for endogenous Ca2+-dependent Cl- channels. TMEM16 proteins are abundantly expressed and many reports demonstrate their physiological importance in epithelial as well as non-epithelial cells. These channels are also activated by cell swelling and can therefore control cell volume, proliferation and apoptosis. To fully understand the function and regulation of Ca2+-activated Cl- currents, it is necessary to appreciate that Best1 and TMEM16A are embedded in a protein network and that they probably operate in functional microdomains.


2005 ◽  
Vol 288 (1) ◽  
pp. C204-C213 ◽  
Author(s):  
Alexander A. Mongin ◽  
Harold K. Kimelberg

Ubiquitously expressed volume-regulated anion channels (VRACs) are activated in response to cell swelling but may also show limited activity in nonswollen cells. VRACs are permeable to inorganic anions and small organic osmolytes, including the amino acids aspartate, glutamate, and taurine. Several recent reports have demonstrated that neurotransmitters or hormones, such as ATP and vasopressin, induce or strongly potentiate astrocytic whole cell Cl− currents and amino acid release, which are inhibited by VRAC blockers. In the present study, we explored the intracellular signaling mechanisms mediating the effects of ATP on d-[3H]aspartate release via the putative VRAC pathway in rat primary astrocyte cultures. Cells were exposed to moderate (5%) or substantial (30%) reductions in medium osmolarity. ATP strongly potentiated d-[3H]aspartate release in both moderately swollen and substantially swollen cells. These ATP effects were blocked (≥80% inhibition) by intracellular Ca2+ chelation with BAPTA-AM, calmodulin inhibitors, or a combination of the inhibitors of protein kinase C (PKC) and calmodulin-dependent kinase II (CaMK II). In contrast, control d-[3H]aspartate release activated by the substantial hyposmotic swelling showed little (≤25% inhibition) sensitivity to the same pharmacological agents. These data indicate that ATP regulates VRAC activity via two separate Ca2+-sensitive signaling cascades involving PKC and CaMK II and that cell swelling per se activates VRACs via a separate Ca2+/calmodulin-independent signaling mechanism. Ca2+-dependent organic osmolyte release via VRACs may contribute to the physiological functions of these channels in the brain, including astrocyte-to-neuron intercellular communication.


2002 ◽  
Vol 283 (2) ◽  
pp. C569-C578 ◽  
Author(s):  
Alexander A. Mongin ◽  
Harold K. Kimelberg

Volume-dependent ATP release and subsequent activation of purinergic P2Y receptors have been implicated as an autocrine mechanism triggering activation of volume-regulated anion channels (VRACs) in hepatoma cells. In the brain ATP is released by both neurons and astrocytes and participates in intercellular communication. We explored whether ATP triggers or modulates the release of excitatory amino acid (EAAs) via VRACs in astrocytes in primary culture. Under basal conditions exogenous ATP (10 μM) activated a small EAA release in 70–80% of the cultures tested. In both moderately (5% reduction of medium osmolarity) and substantially (35% reduction of medium osmolarity) swollen astrocytes, exogenous ATP greatly potentiated EAA release. The effects of ATP were mimicked by P2Y agonists and eliminated by P2Y antagonists or the ATP scavenger apyrase. In contrast, the same pharmacological maneuvers did not inhibit volume-dependent EAA release in the absence of exogenous ATP, ruling out a requirement of autocrine ATP release for VRAC activation. The ATP effect in nonswollen and moderately swollen cells was eliminated by a 5–10% increase in medium osmolarity or by anion channel blockers but was insensitive to tetanus toxin pretreatment, further supporting VRAC involvement. Our data suggest that in astrocytes ATP does not trigger EAA release itself but acts synergistically with cell swelling. Moderate cell swelling and ATP may serve as two cooperative signals in bidirectional neuron-astrocyte communication in vivo.


2019 ◽  
Vol 400 (11) ◽  
pp. 1481-1496 ◽  
Author(s):  
Lingye Chen ◽  
Benjamin König ◽  
Tianbao Liu ◽  
Sumaira Pervaiz ◽  
Yasmin S. Razzaque ◽  
...  

Abstract The volume-regulated anion channel (VRAC) is a key player in the volume regulation of vertebrate cells. This ubiquitously expressed channel opens upon osmotic cell swelling and potentially other cues and releases chloride and organic osmolytes, which contributes to regulatory volume decrease (RVD). A plethora of studies have proposed a wide range of physiological roles for VRAC beyond volume regulation including cell proliferation, differentiation and migration, apoptosis, intercellular communication by direct release of signaling molecules and by supporting the exocytosis of insulin. VRAC was additionally implicated in pathological states such as cancer therapy resistance and excitotoxicity under ischemic conditions. Following extensive investigations, 5 years ago leucine-rich repeat-containing family 8 (LRRC8) heteromers containing LRRC8A were identified as the pore-forming components of VRAC. Since then, molecular biological approaches have allowed further insight into the biophysical properties and structure of VRAC. Heterologous expression, siRNA-mediated downregulation and genome editing in cells, as well as the use of animal models have enabled the assessment of the proposed physiological roles, together with the identification of new functions including spermatogenesis and the uptake of antibiotics and platinum-based cancer drugs. This review discusses the recent molecular biological insights into the physiology of VRAC in relation to its previously proposed roles.


eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Liang Ge ◽  
David Melville ◽  
Min Zhang ◽  
Randy Schekman

Autophagy is a catabolic process for bulk degradation of cytosolic materials mediated by double-membraned autophagosomes. The membrane determinant to initiate the formation of autophagosomes remains elusive. Here, we establish a cell-free assay based on LC3 lipidation to define the organelle membrane supporting early autophagosome formation. In vitro LC3 lipidation requires energy and is subject to regulation by the pathways modulating autophagy in vivo. We developed a systematic membrane isolation scheme to identify the endoplasmic reticulum–Golgi intermediate compartment (ERGIC) as a primary membrane source both necessary and sufficient to trigger LC3 lipidation in vitro. Functional studies demonstrate that the ERGIC is required for autophagosome biogenesis in vivo. Moreover, we find that the ERGIC acts by recruiting the early autophagosome marker ATG14, a critical step for the generation of preautophagosomal membranes.


Sign in / Sign up

Export Citation Format

Share Document