scholarly journals Role of the fourth transmembrane domain in proton-coupled folate transporter function as assessed by the substituted cysteine accessibility method

2013 ◽  
Vol 304 (12) ◽  
pp. C1159-C1167 ◽  
Author(s):  
Daniel Sanghoon Shin ◽  
Rongbao Zhao ◽  
Andras Fiser ◽  
I. David Goldman

The proton-coupled folate transporter (PCFT, SLC46A1) mediates folate transport across the apical brush-border membrane of the proximal small intestine and the basolateral membrane of choroid plexus ependymal cells. Two loss-of-function mutations in PCFT, which are the basis for hereditary folate malabsorption, have been identified within the fourth transmembrane domain (TMD4) in subjects with this disorder. We have employed the substituted Cys accessibility method (SCAM) to study the accessibilities of all residues in TMD4 and their roles in folate substrate binding to the carrier. When residues 146–167 were replaced by Cys, all except R148C were expressed at the cell surface. Modification of five of these substituted Cys residues (positions 147, 152, 157, 158, and 161) by methanethiosulfonate (MTS) reagents led to reduction of PCFT function. All five residues could be labeled with N-biotinylaminoethyl-MTS, and this could be blocked by the high-affinity PCFT substrate pemetrexed. Pemetrexed also protected PCFT mutant function from inhibitory modification of the substituted Cys at positions 157, 158, and 161 by a MTS. The findings indicate that these five residues in TMD4 are accessible to the aqueous translocation pathway, play a role in folate substrate binding, and are likely located within or near the folate binding pocket. A homology model of PCFT places three of these residues, Phe157, Gly158, and Leu161, within a breakpoint in the midportion of TMD4, a region that likely participates in alterations in the PCFT conformational state during carrier cycling.

2012 ◽  
Vol 303 (6) ◽  
pp. C673-C681 ◽  
Author(s):  
Rongbao Zhao ◽  
Daniel Sanghoon Shin ◽  
Andras Fiser ◽  
I. David Goldman

The proton-coupled folate transporter (PCFT) mediates intestinal folate absorption, and loss-of-function mutations in this gene result in the autosomal recessive disorder hereditary folate malabsorption. The current study, focused on a structure-functional analysis of this transporter, identified Gly-189 and Gly-192 (a GxxG motif) located in the fifth transmembrane domain as residues that could not be replaced with alanine without a loss of function. In contrast, function was preserved when Gly-56 and Gly-59 (the other conservative GXXG motif in human PCFT) were replaced with alanine. Similarly, Gly-93 and Gly-97, which constitute the only conserved GXXXG dimerization motif in human PCFT, tolerated alanine substitution. To explore the role of this region in folate binding, the residues around Gly-189 and Gly-192 were analyzed by the substituted cysteine accessibility method. Both I188C and M193C mutants were functional and were inhibited by membrane-impermeable sulfhydryl-reactive reagents; this could be prevented with PCFT substrate, but the protection was sustained at 0°C only for the I188C mutant, consistent with localization of Ile-188 in the PCFT folate binding pocket. The functional role of residues around Gly-189 and Gly-192 is consistent with a molecular structural model in which these two residues along with Ieu-188 are accessible to the PCFT aqueous translocation pathway.


2016 ◽  
Vol 311 (1) ◽  
pp. C150-C157 ◽  
Author(s):  
Mitra Najmi ◽  
Rongbao Zhao ◽  
Andras Fiser ◽  
I. David Goldman

The proton-coupled folate transporter (PCFT) mediates folate absorption across the brush-border membrane of the proximal small intestine and is required for folate transport across the choroid plexus into the cerebrospinal fluid. In this study, the functional role and accessibility of the seven PCFT Trp residues were assessed by the substituted-cysteine accessibility method. Six Trp residues at a lipid-aqueous interface tolerated Cys substitution in terms of protein stability and function. W85C, W202C, and W213C were accessible to N-biotinyl aminoethylmethanethiosulfonate; W48C and W299C were accessible only after treatment with dithiotreitol (DTT), consistent with modification of these residues by an endogenous thiol-reacting molecule and their extracellular location. Neither W107C nor W333C was accessible (even after DTT) consistent with their cytoplasmic orientation. Biotinylation was blocked by pemetrexed only for the W48C (after DTT), W85C, W202C residues. Function was impaired only for the W299C PCFT mutant located in the 4th external loop between the 7th and 8th transmembrane helices. Despite its aqueous location, function could only be fully preserved with Phe and, to a lesser extent, Ala substitutions. There was a 6.5-fold decrease in the pemetrexed influx Vmax and a 3.5- and 6-fold decrease in the influx Kt and Ki, respectively, for the W299S PCFT. The data indicate that the hydrophobicity of the W299 residue is important for function suggesting that during the transport cycle this residue interacts with the lipid membrane thereby impacting on the oscillation of the carrier and, indirectly, on the folate binding pocket.


2019 ◽  
Vol 20 (24) ◽  
pp. 6256 ◽  
Author(s):  
Raju Dash ◽  
Md. Chayan Ali ◽  
Nayan Dash ◽  
Md. Abul Kalam Azad ◽  
S. M. Zahid Hosen ◽  
...  

Sulfotransferase 1A1 (SULT1A1) is responsible for catalyzing various types of endogenous and exogenous compounds. Accumulating data indicates that the polymorphism rs9282861 (R213H) is responsible for inefficient enzymatic activity and associated with cancer progression. To characterize the detailed functional consequences of this mutation behind the loss-of-function of SULT1A1, the present study deployed molecular dynamics simulation to get insights into changes in the conformation and binding energy. The dynamics scenario of SULT1A1 in both wild and mutated types as well as with and without ligand showed that R213H induced local conformational changes, especially in the substrate-binding loop rather than impairing overall stability of the protein structure. The higher conformational changes were observed in the loop3 (residues, 235–263), turning loop conformation to A-helix and B-bridge, which ultimately disrupted the plasticity of the active site. This alteration reduced the binding site volume and hydrophobicity to decrease the binding affinity of the enzyme to substrates, which was highlighted by the MM-PBSA binding energy analysis. These findings highlight the key insights of structural consequences caused by R213H mutation, which would enrich the understanding regarding the role of SULT1A1 mutation in cancer development and also xenobiotics management to individuals in the different treatment stages.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241869
Author(s):  
Keisuke Jimbo ◽  
Toshiaki Okuno ◽  
Ryuichi Ohgaki ◽  
Kou Nishikubo ◽  
Yuri Kitamura ◽  
...  

Chronic enteropathy associated with SLCO2A1 gene (CEAS) is caused by loss-of-function mutations in SLCO2A1, which encodes a prostaglandin (PG) transporter. In this study, we report a sibling case of CEAS with a novel pathogenic variant of the SLCO2A1 gene. Compound heterozygous variants in SLCO2A1 were identified in an 8-year-old boy and 12-year-old girl, and multiple chronic nonspecific ulcers were observed in the patients using capsule endoscopy. The splice site mutation (c.940 + 1G>A) of the paternal allele was previously reported to be pathogenic, whereas the missense variant (c.1688T>C) of the maternal allele was novel and had not yet been reported. The affected residue (p.Leu563Pro) is located in the 11th transmembrane domain (helix 11) of SLCO2A1. Because SLCO2A1 mediates the uptake and clearance of PGs, the urinary PG metabolites were measured by liquid chromatography coupled to tandem mass spectrometry. The urinary tetranor-prostaglandin E metabolite levels in the patients were significantly higher than those in unaffected individuals. We established cell lines with doxycycline-inducible expression of wild type SLCO2A1 (WT-SLCO2A1) and the L563P mutant. Immunofluorescence staining showed that WT-SLCO2A1 and the L563P mutant were dominantly expressed on the plasma membranes of these cells. Cells expressing WT-SLCO2A1 exhibited time- and dose-dependent uptake of PGE2, while the mutant did not show any uptake activity. Residue L563 is very close to the putative substrate-binding site in SLCO2A1, R561 in helix 11. However, in a molecular model of SLCO2A1, the side chain of L563 projected outside of helix 11, indicating that L563 is likely not directly involved in substrate binding. Instead, the substitution of Pro may twist the helix and impair the transporter function. In summary, we identified a novel pathogenic variant of SLCO2A1 that caused loss-of-function and induced CEAS.


2018 ◽  
Author(s):  
Ieva Vasiliauskaité-Brooks ◽  
Robert D. Healey ◽  
Pascal Rochaix ◽  
Rémy Sounier ◽  
Claire Grison ◽  
...  

AbstractAlkaline ceramidases (ACERs) are a class of poorly understood transmembrane enzymes controlling the homeostasis of ceramides. They are implicated in human pathophysiology, including progressive leukodystrophy, colon cancer as well as acute myeloid leukemia. We report here the crystal structure of the human ACER type 3 (ACER3). Together with computational studies, the structure reveals that ACER3 is an intramembrane enzyme with a seven transmembrane domain architecture and a catalytic Zn2+ binding site in its core, similar to adiponectin receptors. Interestingly, we uncover a Ca2+ binding site physically and functionally connected to the Zn2+ providing a structural explanation for the known regulatory role of Ca2+ on ACER3 enzymatic activity and for the loss of function in E33G-ACER3 mutant found in leukodystrophic patients.


2018 ◽  
Vol 314 (3) ◽  
pp. C289-C296 ◽  
Author(s):  
Srinivas Aluri ◽  
Rongbao Zhao ◽  
Andras Fiser ◽  
I. David Goldman

The proton-coupled folate transporter (PCFT-SLC46A1) is required for folate transport across the apical membrane of the small intestine and across the choroid plexus. This study focuses on the structure/function of the 7th transmembrane domain (TMD), and its relationship to the 8th TMD as assessed by the substituted cysteine accessibility method (SCAM) and dicysteine cross-linking. Nine exofacial residues (I278C; H281C–L288C) of 23 residues in the 7th TMD were accessible to 2-((biotinoyl)amino)ethyl methanethiosulfonate (MTSEA-biotin). Pemetrexed, a high-affinity substrate for PCFT, decreased or abolished biotinylation of seven of these residues consistent with their location in or near the folate binding pocket. Homology models of PCFT based on Glut5 fructose transporter structures in both inward- and outward- open conformations were constructed and predicted that two pairs of residues (T289-I304C and Q285-Q311C) from the 7th and 8th TMDs should be in sufficiently close proximity to form a disulfide bond when substituted with cysteines. The single Cys-substituted mutants were accessible to MTSEA-biotin and functional with and without pretreatment with dithiotreitol. However, the double mutants were either not accessible at all, or accessibility was markedly reduced and function markedly impaired. This occurred spontaneously without inclusion of an oxidizing agent. Dithiotreitol restored accessibility and function consistent with disulfide bond disruption. The data establish the proximity of exofacial regions of the 7th and 8th TMDs and their role in defining the aqueous translocation pathway and suggest that these helices may be a component of an exofacial cleft through which substrates enter the protein binding pocket in its outward-open conformation.


2009 ◽  
Vol 297 (1) ◽  
pp. C66-C74 ◽  
Author(s):  
Ersin Selcuk Unal ◽  
Rongbao Zhao ◽  
I. David Goldman

The proton-coupled folate transporter (PCFT) SLC46A1 mediates uphill folate transport into enterocytes in proximal small intestine coupled to the inwardly directed proton gradient. Hereditary folate malabsorption is due to loss-of-function mutations in the PCFT gene. This study addresses the functional role of conserved charged amino acid residues within PCFT transmembrane domains with a detailed analysis of the PCFT E185 residue. D156A-, E185A-, E232A-, R148A-, and R376A-PCFT mutants lost function at pH 5.5, as assessed by transient transfection in folate transport-deficient HeLa cells. At pH 7.4, function was preserved only for E185A-PCFT. Loss of function for E185A-PCFT at pH 5.5 was due to an eightfold decrease in the [3H]methotrexate (MTX) influx Vmax; the MTX influx Ktwas identical to that of wild-type (WT)-PCFT (1.5 μM). Consistent with the intrinsic functionality of E185A-PCFT, [3H]MTX influx at pH 5.5 or 7.4 was trans-stimulated in cells preloaded with nonlabeled MTX or 5-formyltetrahydrofolate. Replacement of E185 with Leu, Cys, His, or Gln resulted in a phenotype similar to E185A-PCFT. However, there was greater preservation of activity (∼38% of WT) for the similarly charged E185D-PCFT at pH 5.5. All E185 substitution mutants were biotin accessible at the plasma membrane at a level comparable to WT-PCFT. These observations suggest that the E185 residue plays an important role in the coupled flows of protons and folate mediated by PCFT. Coupling appears to have a profound effect on the maximum rate of transport, consistent with augmentation of a rate-limiting step in the PCFT transport cycle.


2021 ◽  
Author(s):  
Stefanie Brands ◽  
Jarno G. Sikkens ◽  
Mehdi D. Davari ◽  
Hannah U. C. Brass ◽  
Andreas S. Klein ◽  
...  

Prodigiosin ligase PigC has been engineered by semi-rational design to accept short chain-pyrroles, providing molecular understanding of access tunnels and the substrate-binding pocket.


Sign in / Sign up

Export Citation Format

Share Document