Coordinated expression of UT-A and UT-B urea transporters in rat testis

2002 ◽  
Vol 282 (6) ◽  
pp. C1492-C1501 ◽  
Author(s):  
R. A. Fenton ◽  
G. J. Cooper ◽  
I. D. Morris ◽  
C. P. Smith

The blood-seminiferous tubule barrier is responsible for maintaining the unique microenvironment conducive to spermatogenesis. A key feature of the blood-testis barrier is selective permeability to solutes and water transport, conferred by the Sertoli cells of the seminiferous tubules (SMTs). Movement of fluid into the lumen of the seminiferous tubule is crucial to spermatogenesis. By Northern analysis, we have shown that 4.0-, 3.3-, 2.8-, and ∼1.7-kb UT-A mRNA transcripts and a 3.8-kb UT-B mRNA transcript are detected within rat testis. Western analysis revealed the expression of both characterized and novel UT-A and UT-B proteins within the testis. Immunolocalization studies determined that UT-A and UT-B protein expression are coordinated with the developmental stage of the SMT. UT-A proteins were detected in Sertoli cell nuclei at all stages of tubule development and in residual bodies of stage VIII tubules. UT-B protein was expressed on Sertoli cell membranes of stage II–III tubules. Using in vitro perfusion, we determined that a phloretin-inhibitable urea pathway exists across the SMTs of rat testis and conclude that UT-B is likely to participate in this pathway.

1992 ◽  
Vol 70 (6) ◽  
pp. 496-503 ◽  
Author(s):  
Kathleen Creed Page ◽  
Paul B. Mason ◽  
Lynn Lindstrom ◽  
James S. Swan ◽  
Sally E. Nyquist

The relative contribution of the Sertoli cell and the pachytene spermatocyte to dolichol and N-linked oligosaccharide biosynthesis within the seminiferous tubule was investigated. Evidence is presented to show that the interaction between these two cell types affects dolichol and N-linked oligosaccharide biosynthesis. Analysis of the dolichol content of Sertoli cultures confirms earlier data suggesting that the Sertoli cell constitutes the major pool of dolichols within the seminiferous tubule. [14C]Acetate incorporation studies suggest that the Sertoli cell in culture synthesizes dolichol much more rapidly than does the isolated pachytene spermatocyte. This information, in addition to previous data in the literature, infers an interactive effect whereby the presence of the spermatogenic cell in the tubule stimulates dolichol synthesis in the Sertoli cell. The absence of normal Sertoli-spermatocyte interactions in in vitro incubations may also limit dolichol synthesis in the pachytene spermatocyte. The distribution of dolichol kinase between the Sertoli and the pachytene spermatocyte was also examined. The concentration of this enzyme in the Sertoli cell suggests the presence of an active salvage pathway within that cell. The correlation between the appearance of the pachytene spermatocyte and the previously described peak of dolichol kinase activity in the seminiferous tubules of the prepubertal animal implies cell–cell interactions. Radiolabelling studies of N-linked oligosaccharides were conducted using [3H]mannose and concanavalin A affinity chromatography to identify multiantennary, biantennary, and high-mannose oligosaccharide pools. An in vitro bicameral coculture system was used to demonstrate that pachytene spermatocytes stimulate incorporation of [3H]mannose into Sertoli cell oligosaccharides. The presence of spermatocytes also induced a shift of label from the multiantennary oligosaccharide pool to the high-mannose pool in the Sertoli cell. Reciprocal experiments, in which the pachytene spermatocyte oligosaccharide pools were observed, showed no significant changes. These studies show a clear pachytene spermatocyte derived paracrine effect on Sertoli cell glycosylation.Key words: glycoprotein, dolichol, Sertoli, spermatocyte.


2010 ◽  
Vol 22 (9) ◽  
pp. 66
Author(s):  
P. K. Nicholls ◽  
P. G. Stanton ◽  
K. L. Walton ◽  
R. I. McLachlan ◽  
L. O'Donnell ◽  
...  

Spermatogenesis is absolutely dependent on follicle stimulating hormone (FSH) and androgens; acute suppression of these hormones inhibits germ cell development and thus sperm production. The removal of intercellular junctions and release of spermatids by the Sertoli cell, a process known as spermiation, is particularly sensitive to acute hormone suppression(1). To define the molecular mechanisms that mediate FSH and androgen effects in the testis, we investigated the expression and hormonal regulation of micro-RNAs (miRNA), small non-coding RNAs that regulate protein translation and modify cellular responses. By array analysis, we identified 23 miRNAs that were upregulated >2-fold in stage VIII seminiferous tubules following hormone suppression, and in vitro in primary Sertoli cells. We subsequently validated the expression and hormonal regulation of several miRNAs, including miR-23b, -30d and -690 by quantitative PCR in primary Sertoli cells. Bioinformatic analysis of potential targets of hormonally-suppressed miRNAs identified genes associated with Focal adhesions (54 genes, P = –ln(17.97)) and the Regulation of the actin cytoskeleton (52 genes, P = –ln(10.16)), processes known to be intimately associated with adhesion of spermatids to Sertoli cells(2, 3). Furthermore, this analysis identified numerous components of the testicular tubulobulbar complex (TBC) as being targets of hormonally sensitive miRNAs. The TBC is a podosome-like structure between Sertoli and adjacent spermatids in the testis, which internalises intact inter-cellular junctions by endocytotic mechanisms prior to spermiation(4). We then demonstrate the hormonal regulation of predicted miRNA target proteins, and validate novel inhibitory miRNA interactions with Pten, nWASP, Eps15 and Picalm by luciferase knockdown in vitro. We hypothesise that hormonally suppressed miRNAs inhibit TBC function, and subsequently, endocytosis of intercellular junctions. In conclusion, we have demonstrated that hormonal suppression in the testis stimulates the expression of a subset of Sertoli cell miRNAs that are likely regulators of cell adhesion protein networks involved in spermiation. (1) Saito K, O’Donnell L, McLachlan RI, Robertson DM 2000 Spermiation failure is a major contributor to early spermatogenic suppression caused by hormone withdrawal in adult rats. Endocrinology 141: 2779–2.(2) O’Donnell L, Stanton PG, Bartles JR, Robertson DM 2000 Sertoli cell ectoplasmic specializations in the seminiferous epithelium of the testosterone-suppressed adult rat. Biol Reprod 63: 99–108.(3) Beardsley A, Robertson DM, O’Donnell L 2006 A complex containing alpha6beta1-integrin and phosphorylated focal adhesion kinase between Sertoli cells and elongated spermatids during spermatid release from the seminiferous epithelium. J Endocrinol 190(3): 759–70.(4) Young JS, Guttman JA, Vaid KS, Vogl AW 2009 Tubulobulbar complexes are intercellular podosome-like structures that internalize intact intercellular junctions during epithelial remodeling events in the rat testis. Biol Reprod 80: 162–74.


2017 ◽  
Vol 29 (8) ◽  
pp. 1635 ◽  
Author(s):  
A. Dance ◽  
J. Kastelic ◽  
J. Thundathil

Beef and dairy bull calves fed a low-nutrition diet during early life had decreased concentrations of circulating insulin-like growth factor I (IGF-I), delayed increases in testosterone, smaller testes and delayed puberty compared with those fed high-nutrition diets. Although IGF-1 has important roles in Sertoli cell function in rats and mice, this has not been well documented in bulls. The objectives of this study were to: (1) isolate Sertoli cells from bull calves at 8 weeks of age, (2) culture them in vitro and (3) determine the effects of IGF-I, FSH and a combination of both hormones on cell proliferation. For Sertoli cell isolation, minced testicular tissues were treated with collagenase followed by trypsin and hyaluronidase to digest seminiferous tubules and release Sertoli cells. In this study, Sertoli cells were successfully isolated from 8-week-old Holstein bull calves (n = 4) and these cells were cultured for up to 8 days. A combination of IGF-I and FSH increased proliferation (~18%) and therefore cell number (1.5-fold) of prepubertal bovine Sertoli cells in culture, providing clear evidence that IGF-I has a similar role in bovine Sertoli cells as reported in rodents.


1999 ◽  
Vol 145 (5) ◽  
pp. 1027-1038 ◽  
Author(s):  
Antonella Tripiciano ◽  
Carmelina Peluso ◽  
Anna Rita Morena ◽  
Fioretta Palombi ◽  
Mario Stefanini ◽  
...  

The potent smooth muscle agonist endothelin-1 (ET-1) is involved in the local control of seminiferous tubule contractility, which results in the forward propulsion of tubular fluid and spermatozoa, through its action on peritubular myoid cells. ET-1, known to be produced in the seminiferous epithelium by Sertoli cells, is derived from the inactive intermediate big endothelin-1 (big ET-1) through a specific cleavage operated by the endothelin-converting enzyme (ECE), a membrane-bound metalloprotease with ectoenzymatic activity. The data presented suggest that the timing of seminiferous tubule contractility is controlled locally by the cyclic interplay between different cell types. We have studied the expression of ECE by Sertoli cells and used myoid cell cultures and seminiferous tubule explants to monitor the biological activity of the enzymatic reaction product. Northern blot analysis showed that ECE-1 (and not ECE-2) is specifically expressed in Sertoli cells; competitive enzyme immunoassay of ET production showed that Sertoli cell monolayers are capable of cleaving big ET-1, an activity inhibited by the ECE inhibitor phosphoramidon. Microfluorimetric analysis of intracellular calcium mobilization in single cells showed that myoid cells do not respond to big endothelin, nor to Sertoli cell plain medium, but to the medium conditioned by Sertoli cells in the presence of big ET-1, resulting in cell contraction and desensitization to further ET-1 stimulation; in situ hybridization analysis shows regional differences in ECE expression, suggesting that pulsatile production of endothelin by Sertoli cells (at specific “stages” of the seminiferous epithelium) may regulate the cyclicity of tubular contraction; when viewed in a scanning electron microscope, segments of seminiferous tubules containing the specific stages characterized by high expression of ECE were observed to contract in response to big ET-1, whereas stages with low ECE expression remained virtually unaffected. These data indicate that endothelin-mediated spatiotemporal control of rhythmic tubular contractility might be operated by Sertoli cells through the cyclic expression of ECE-1, which is, in turn, dependent upon the timing of spermatogenesis.


1974 ◽  
Vol 60 (2) ◽  
pp. 269-NP ◽  
Author(s):  
H. J. GALENA ◽  
C. TERNER

SUMMARY A method is described for the isolation of non-flagellate germinal cells of the testis. The interstitial cells were removed by submersion of teased seminiferous tubules in distilled water. The interstitial cells exposed to water burst while the germinal cells inside the tubules remained intact. The tubules were then homogenized in isotonic saline and the non-flagellate germinal cells (spermatocytes and young spermatids) were isolated by centrifugation and filtration through a layer of Sephadex G-25 gel. On incubation with progesterone these cells produced 17α-hydroxyprogesterone, androstenedione, and testosterone. The rate of conversion of progesterone to testosterone in vitro was 0·20 μg/h/109 germinal cells. These results suggest that the non-flagellate germinal cells of the testis may make a significant contribution to the production of androgens.


2002 ◽  
Vol 126 (1) ◽  
pp. 64-69
Author(s):  
Manuel Nistal ◽  
María Luisa Riestra ◽  
Ricardo Paniagua

Abstract Objective.—To evaluate seminiferous epithelium lesions in adult cryptorchid testes showing lymphoid infiltrates in seminiferous tubules and interstitium (ie, focal orchitis). Also, to consider the possible role of this lesion in the etiology of tubular atrophy. Methods.—We performed a histopathologic study of the cryptorchid testes and adjacent epididymides removed from 50 adult men who had not been previously treated for cryptorchidism. The study included morphologic and semiquantitative evaluation of seminiferous tubule pathology (according to germ cell numbers), Sertoli cell morphology, tubular lumen dilation, rete testis pattern (normal, hypoplastic, or cystic), and epididymal pattern (normal or epididymal duct hypoplasia). The study also included immunohistochemical evaluation of immune cell markers. The results were compared with clinical and laboratory findings. Results.—Focal lymphoid infiltrates (mainly lymphocytes) in seminiferous tubules and interstitium were found in 22 patients (44%), all of whom had unilateral cryptorchidism. The course of orchitis was asymptomatic, and laboratory data were normal. According to the seminiferous tubule pathology, a variety of histopathologic diagnoses, were made: (1) mixed atrophy consisting of Sertoli cell–only tubules intermingled with tubules showing maturation arrest of spermatogonia (11 testes, 4 of which also showed hyalinized tubules); (2) Sertoli cell–only tubules plus hyalinized tubules (4 testes); (3) Sertoli cell–only tubules (3 testes); (4) intratubular germ cell neoplasia (2 testes, 1 of which also showed hyalinized tubules); (5) complete tubular hyalinization (1 testis); and (6) tubular hyalinization plus some groups of tubules with hypospermatogenesis (all germ cell types were present although in lower numbers, 1 testis). Dysgenetic Sertoli cells, that is, Sertoli cells that had undergone anomalous, incomplete maturation, were observed in all nonhyalinized seminiferous tubules with inflammatory infiltrates. Tubular ectasia was observed in 13 cases. The rete testis was hypoplastic and showed cystic transformation in 18 testes, and the epididymis was hypoplastic in 15 testes. Conclusions.—The causes of these focal inflammatory infiltrates are unknown. It is possible that tubular ectasia and Sertoli cell dysgenesis are involved and that these alterations cause a disruption of the blood-testis barrier and allow antigens to enter the testicular interstitium, giving rise to an autoimmune process.


Endocrinology ◽  
2000 ◽  
Vol 141 (12) ◽  
pp. 4413-4418 ◽  
Author(s):  
Taranum Sultana ◽  
Konstantin Svechnikov ◽  
Günther Weber ◽  
Olle Söder

Abstract We report here the characterization of an alternative splice variant of prointerleukin-1α (proIL-1α), constitutively expressed by the normal adult rat testis. In addition to the classical 32K proIL-1α (32proIL-1α) messenger RNA, the testis produced a shorter variant encoding a putative protein of 24K (24proIL-1α). In situ hybridization demonstrated constitutive expression of the splice transcript in the seminiferous tubules. This alternative complementary DNA lacked the fifth exon, harboring the calpain cleavage site essential for generation of mature 17K IL-1α. This was verified by calpain treatment, producing the expected cleavage products of recombinant 32proIL-1α, but not of 24proIL-1α. Similarly, expression in COS-7 cells demonstrated processing of 32proIL-1α to the mature 17K form and secretion, whereas 24proIL-1α remained unprocessed. Both 32proIL-1α and 24proIL-1α showed a dose-dependent stimulatory effect in a thymocyte proliferation assay, although at lower potency than mature 17K IL-1α. In contrast, when tested on hCG-stimulated Leydig cells in vitro, a dose-dependent inhibition of testosterone production was obtained with mature 17K IL-1α and at a lower potency with 32proIL-1α, whereas 24proIL-1α was inactive. In conclusion, the three IL-1 bioactive proteins described here contribute to IL-1 protein heterogeneity and may serve as constitutive paracrine mediators in the testis.


1987 ◽  
Vol 112 (2) ◽  
pp. 311-NP ◽  
Author(s):  
H. D. Nicholson ◽  
R. T. S. Worley ◽  
S. E. F. Guldenaar ◽  
B. T. Pickering

ABSTRACT An oxytocin-like peptide is present in the interstitial cells of the testis, and testicular concentrations of oxytocin have been shown to increase seminiferous tubule movements in vitro. We have used the drug ethan-1,2-dimethanesulphonate (EDS), which depletes the Leydig cell population of the adult rat testis, to examine further the relationships between the Leydig cell, testicular oxytocin and tubular movements. Adult rats were injected i.p. with a single dose of EDS (75 mg/kg) or of vehicle (25% dimethyl sulphoxide). Histological study 3 and 10 days after treatment with EDS showed a reduction in the number of interstitial cells, and levels of oxytocin immunoreactivity were undetectable by radioimmunoassay. Immunostaining revealed very few oxytocin-reactive cells. Spontaneous contractile activity of the seminiferous tubules in vitro was also dramatically reduced, but could be restored by the addition of oxytocin to the medium. Four weeks after EDS treatment, the interstitial cells were similar to those in the control animals both in number and in immunostaining; immunoassayable oxytocin was present and tubular movements were normal. The EDS effect, seen at 3 and 10 days, was not altered by daily treatment with testosterone. However, repopulation of the testes with oxytocin-immunoreactive cells was not seen until 6 weeks in the testosterone-treated animals. We suggest that the Leydig cells are the main source of oxytocin immunoreactivity in the testis and that this oxytocin is involved in modulating seminiferous tubule movements and the resultant sperm transport. The results also imply that testosterone does not play a major role in controlling tubular activity in the mature rat. J. Endocr. (1987) 112, 311–316


1988 ◽  
Vol 119 (2) ◽  
pp. 315-326 ◽  
Author(s):  
R. M. Sharpe ◽  
I. A. Swanston ◽  
I. Cooper ◽  
C. G. Tsonis ◽  
A. S. McNeilly

ABSTRACT Immunoreactive inhibin was measured in testicular interstitial fluid (IF) from rats during sexual maturation or after impairment of spermatogenesis induced by ethane dimethanesulphonate (EDS), unilateral cryptorchidism or local heating (43 °C, 30 min) of the testes, to ascertain its usefulness as a marker of changing Sertoli cell function. Cultures of isolated seminiferous tubules were also studied. Inhibin was measured by a radioimmunoassay directed towards the first 26 amino acids of the N-terminus of the α-subunit, and the results confirmed for selected pools of IF by in-vitro bioassay using dispersed ovine pituitary cells. During puberty, IF levels of immunoactive inhibin fell by more than 90% (P<0·001) between 30 and 60 days of age, a decrease paralleled by the levels of androgen-binding protein (ABP), another Sertoli cell product secreted into IF. These changes also paralleled, but preceded, the fall (60%; P<0·001) in serum levels of FSH between 40 and 70 days, while the serum and IF levels of testosterone increased more than two-fold over this period. When adult rats were injected with EDS to destroy the Leydig cells, testosterone levels in IF and serum were undetectable at 3 and 7 days after treatment, were just detectable at 14 days and thereafter returned slowly towards normal by 42 days. The initial androgen withdrawal following EDS treatment caused a progressive reduction in testicular weight up to 21 days and this was accompanied by a significant increase in the serum levels of FSH and a two- to threefold increase in the IF levels of immunoactive inhibin (and also of ABP). Serum FSH and IF levels of immunoactive inhibin returned to within the normal range by 42 days when testosterone levels had normalized. In contrast, in two other experimental situations in which a marked decrease in testicular weight coupled with an increase in IF levels of ABP occurs, different results for the IF levels of immunoactive inhibin were obtained. Thus, in rats exposed to local heating of the testes, IF levels of immunoactive inhibin remained unchanged from control values at 21–40 days after treatment, a finding confirmed by bioassay results. In rats made unilaterally cryptorchid for 10 months, levels of immunoactive inhibin in IF were reduced by 60% (P<0·01) in the abdominal compared with the contralateral scrotal testis. These results suggest that (1) IF levels of immunoactive inhibin do not always change in parallel to the levels of ABP and may be a useful marker of changing Sertoli cell function, and (2) in at least two situations (puberty and after EDS treatment), there may be a positive relationship between the serum levels of FSH and the IF levels of immunoactive inhibin. This positive relationship was confirmed by in-vitro findings in which FSH and dibutyryl cyclic AMP (but not testosterone) were shown to stimulate immunoactive inhibin production by isolated rat seminiferous tubules during culture for 2–6 days. J. Endocr. (1988) 119, 315–326


Sign in / Sign up

Export Citation Format

Share Document