Induction of cytochrome P-450 in a selective subpopulation of hepatocytes

1978 ◽  
Vol 234 (3) ◽  
pp. C102-C109 ◽  
Author(s):  
J. J. Gumucio ◽  
L. J. DeMason ◽  
D. L. Miller ◽  
S. O. Krezoski ◽  
M. Keener

The objective of this study was to determine whether the inductive effect of phenobarbital (PB) on liver cytochrome P-450 was the result of the action of this drug on all or some hepatocytes. For this purpose, a light (cell band I) and a heavy (cell band II) subpopulation of hepatocytes were separated from rat liver in a continuous density gradient. To determine the location of these hepatocytes in tissue, [14C]bromobenzene, which binds covalently to centrilobular hepatocytes, was administered. The specific activity (14C dpm/mg protein) was greater in cells of band I than in cells of band II, suggesting a predominant contribution of centrilobular hepatocytes to the lighter cell band. Microsomes were separated from each cell subpopulation after 3 days of PB administration and cytochrome P-450 was measured. Although a fivefold increment in cytochrome P-450 content of light hepatocytes was noted, the content of heavy hepatocytes was similar to that of the respective subpopulation in controls. Concomitantly, PB administered for 3 days induced the smooth endoplasmic reticulum of centrilobular hepatocytes only, as revealed by electron microscopy of whole tissue. These results indicated that PB induces cytochrome P-450 in a selective subpopulation of hepatocytes, most likely located near the terminal hepatic venule.

Author(s):  
S.M. Geyer ◽  
C.L. Mendenhall ◽  
J.T. Hung ◽  
E.L. Cardell ◽  
R.L. Drake ◽  
...  

Thirty-three mature male Holtzman rats were randomly placed in 3 treatment groups: Controls (C); Ethanolics (E); and Wine drinkers (W). The animals were fed synthetic diets (Lieber type) with ethanol or wine substituted isocalorically for carbohydrates in the diet of E and W groups, respectively. W received a volume of wine which provided the same gram quantity of alcohol consumed by E. The animals were sacrificed by decapitation after 6 weeks and the livers processed for quantitative triglycerides (T3), proteins, malic enzyme activity (MEA), light microscopy (LM) and electron microscopy (EM). Morphometric analysis of randomly selected LM and EM micrographs was performed to determine organellar changes in centrilobular (CV) and periportal (PV) regions of the liver. This analysis (Table 1) showed that hepatocytes from E were larger than those in C and W groups. Smooth endoplasmic reticulum decreased in E and increased in W compared to C values.


1976 ◽  
Vol 22 (1) ◽  
pp. 173-197
Author(s):  
J.A. Higgins

During proliferation of smooth endoplasmic reticulum (SER) induced by phenobarbital the specific activity of acyltransferases of the smooth microsomes increases, there is a transient rise in the phospholipid/protein ratio of these membranes, and an increased incorporation of [14C]glycerol into smooth-membrane phospholipid. Microsomes separated into subfractions on 2 gradients exhibited a heterogeneous distribution of these characteristics, indicating a non-uniform distribution of the site of phospholipid synthesis in the ER under these conditions. Cytochemical localization of acyltransferases on whole liver and smooth and rough microsomes confirmed this heterogeneity, and indicated that the distribution of this activity was not restricted to any morphologically distinct site in the ER of the intact cell. After 4 days of phenobarbital treatment the increased membrane is restricted to lighter subfractions and is similar in distribution to that of increased acyltransferase activity. These results indicate that the synthesis of membrane phospholipid and the growth of the SER in response to phenobarbital is not uniform but occurs at randomly dispersed sites in the SER while proteins may be added preferentially at these sites resulting in a final uniform distribution.


1968 ◽  
Vol 110 (3) ◽  
pp. 407-412 ◽  
Author(s):  
J. L. Holtzman ◽  
T. E. Gram ◽  
P. L. Gigon ◽  
J. R. Gillette

Mixed-function oxidase activity, when measured by the N-demethylation of ethylmorphine or the hydroxylation of aniline, is significantly higher in the smooth hepatic endoplasmic reticulum than in the rough. In the rabbit the smooth membrane/rough membrane activity ratios are significantly greater than 1 whether the activities are expressed per g. of liver (ratio 5), per mg. of protein (ratio 3–5), per μg. of phospholipid phosphorus (ratio 2), per unit of cytochrome P-450 (ratio 1·7) or per unit of NADPH–cytochrome c reductase activity (ratio 2). On the other hand, if the activities are normalized to the NADPH–cytochrome P-450 reductase, there is no significant difference between the rough and smooth membranes. These results suggest that, in the rabbit, the rate-limiting step is the reduction of cytochrome P-450. In contrast, in the rat the difference in activities can be explained by differences in the concentration of cytochrome P-450.


1968 ◽  
Vol 16 (9) ◽  
pp. 561-571 ◽  
Author(s):  
JOHN B. EMANS ◽  
ALBERT L. JONES

Progesterone given daily for several days to male golden hamsters was shown to promote an increase in liver weight and a striking increase in hepatic smooth endoplasmic reticulum. This increase in smooth reticulum observed by electron microscopy was confirmed biochemically through microsomal phospholipid measurements. The alterations in liver structure brought about by administration of progesterone are comparable to those induced by phenobarbital. Hypertrophy of the smooth reticulum is seen in the form of a delicate system of interwoven tubules which freely anastomose and often are seen in confluence with the lamellar profiles of rough reticulum. Progesterone-induced hypertrophy of the hepatic smooth endoplasmic reticulum demonstrates that this organelle is responsive to an endogenous compound normally present in the circulation, and suggests that stimulation by steroids may be responsible in part for the maintenance of microsomal hydroxylases and smooth reticulum in the normal hepatic cell.


1971 ◽  
Vol 49 (2) ◽  
pp. 264-287 ◽  
Author(s):  
A. Leskes ◽  
P. Siekevitz ◽  
G. E. Palade

The distribution of glucose-6-phosphatase activity in rat hepatocytes during a period of rapid endoplasmic reticulum differentiation (4 days before birth-1 day after birth) was studied by electron microscope cytochemistry. Techniques were devised to insure adequate morphological preservation, retain glucose-6-phosphatase activity, and control some other possible artifacts. At all stages examined the lead phosphate deposited by the cytochemical reaction is localized to the endoplasmic reticulum and the nuclear envelope. At 4 days before birth, when the enzyme specific activity is only a few per cent of the adult level, the lead deposit is present in only a few hepatocytes. In these cells a light deposit is seen throughout the entire rough-surfaced endoplasmic reticulum. At birth, when the specific activity of glucose-6-phosphatase is approximately equal to that of the adult, nearly all cells show a positive reaction for the enzyme and, again, the deposit is evenly distributed throughout the entire endoplasmic reticulum. By 24 hr postparturition all of the rough endoplasmic reticulum, and in addition the newly formed smooth endoplasmic reticulum, contains heavy lead deposits; enzyme activity at this stage is 250% of the adult level. These findings indicate that glucose-6-phosphatase develops simultaneously within all of the rough endoplasmic reticulum membranes of a given cell, although asynchronously in the hepatocyte population as a whole. In addition, the enzyme appears throughout the entire smooth endoplasmic reticulum as the membranes form during the first 24 hr after birth. The results suggest a lack of differentiation within the endoplasmic reticulum with respect to the distribution of glucose-6-phosphatase at the present level of resolution.


Author(s):  
Joan A. Higgins

In response to intraperitoneal injections of phenobarbital there is a marked proliferation of smooth endoplasmic reticulum membranes (s.e.r.) of rat hepatocytes, with little change in other membranous organelles. This increased membrane formation is accompanied by a rise in the specific activity of the enzymes involved in drug detoxification initially in the rough endoplasmic reticulum (r.e.r.) followed by a rise in the s.e.r. There is also an increased accumulation of glycerophospholipid in the newly formed s.e.r.


1981 ◽  
Vol 196 (2) ◽  
pp. 585-589 ◽  
Author(s):  
M B Cooper ◽  
M R Estall ◽  
B R Rabin

1. The phospholipid bilayer of intact vesicles from smooth endoplasmic reticulum is impermeable to macromolecules. Specific and non-specific proteinases were used to investigate the site of membrane proteins in the transverse plane of the bilayer. 2. When two proteinases were used in conjunction, denaturing effects additional to proteolysis were observed on cytochrome P-450 content and glucose 6-phosphatase activity which did not depend on the integrity of the phospholipid bilayer. 3. When lipid peroxidation was inhibited, these effects were not observed.


1995 ◽  
Vol 1 (4) ◽  
pp. 151-161
Author(s):  
Kuixiong Gao ◽  
Emma Lou Cardell ◽  
Randal E. Morris ◽  
Bruce F. Giffin ◽  
Robert R. Cardell

Phosphoenolpyruvate carboxykinase (PEPCK) is the rate-limiting gluconeogenic enzyme and in liver occurs in a lobular gradient from periportal to pericentral regions. The subcellular distribution of cytoplasmic PEPCK molecules within hepatocytes and its relationship to organelles have not been determined previously. In this study, we have used immunogold electron microscopy to evaluate the subcellar distribution of the enzyme, in addition to brightfield and epipolarized light microscopy. Cryosections (10 μm) of perfusion-fixed rat liver were collected on silanated slides and immunostained using goat anti-rat PEPCK followed by 5-nm gold-labeled secondary and tertiary antibodies. Additionally, free-floating vibratome sections (25, 50, and 100 μm) of perfusion-immersion-fixed rat liver were immunogold stained using goat anti-rat PEPCK and 5-nm gold-labeled secondary antibody, with and without silver enhancement. The immunogold labeled sections from both procedures were embedded in epoxy resin for the preparation of thin sections for electron microscopy. The results showed that the gold-labeled antibodies penetrated the entire thickness of cryosections, resulting in a high signal for PEPCK, but membranes in general, the smooth endoplasmic reticulum in particular, were not identifiable as electron dense unit membranes. On the other hand, the vibratome sections of well-fixed tissue allowed good visualization of the ultrastructure of cellular organelles, with the smooth endoplasmic reticulum appearing as vesicles and tubules with electron dense unit membranes; however, the penetration of the gold-labeled antibody was limited to cells at the surface of the vibratome sections. In both procedures, PEPCK, as indicated by gold particles, is predominantly in the glycogen areas of the cytosome and not in mitochondria, nuclei, Golgi apparatus, or other cell organelles. Hepatocytes in periportal regions have a compact subcellular distribution of PEPCK shown by gold particles; hepatocytes in pericentral regions have a diffuse subcellular distribution of PEPCK and thus more scattered gold particles. When normal serum replaced the first antibody in the immunogold staining procedures, the background was very low.


Sign in / Sign up

Export Citation Format

Share Document