Single-channel recordings from amiloride-sensitive epithelial sodium channel

1985 ◽  
Vol 249 (3) ◽  
pp. C200-C207 ◽  
Author(s):  
K. L. Hamilton ◽  
D. C. Eaton

We report here the first evidence in intact epithelial cells of unit conductance events from an amiloride-sensitive Na+ channel. The events were observed when patch-clamp recordings were made from the apical surface of cultured epithelial kidney cells (A6). The channel characteristics are as follows. Single-channel conductance ranged between 7 and 10 pS (mean = 8.4 +/- 1.3), the current-voltage (I-V) relationship displayed little if any nonlinearity over a range of +/- 80 mV (with respect to the patch pipette), and the channel Na+/K+ selectivity was approximately 3-4:1. Amiloride, a cationic blocker of the channel, reduced channel mean open time and increased channel mean closed time as the voltage of the cell interior was made more negative. Amiloride induced channel flickering at increased negative potentials (intracellular potential with respect to the patch) but did not alter the single-channel conductance or the I-V relationship from that observed in control patches.

2013 ◽  
Vol 141 (4) ◽  
pp. 493-497 ◽  
Author(s):  
Yanyan Geng ◽  
Xiaoyu Wang ◽  
Karl L. Magleby

Large-conductance, voltage- and Ca2+-activated K+ (BK) channels display near linear current–voltage (I-V) plots for voltages between −100 and +100 mV, with an increasing sublinearity for more positive potentials. As is the case for many types of channels, BK channels are blocked at positive potentials by intracellular Ca2+ and Mg2+. This fast block progressively reduces single-channel conductance with increasing voltage, giving rise to a negative slope in the I-V plots beyond about +120 mV, depending on the concentration of the blockers. In contrast to these observations of pronounced differences in the magnitudes and shapes of I-V plots in the absence and presence of intracellular blockers, Schroeder and Hansen (2007. J. Gen. Physiol. http://dx.doi.org/10.1085/jgp.200709802) have reported identical I-V plots in the absence and presence of blockers for BK channels, with both plots having reduced conductance and negative slopes, as expected for blockers. Schroeder and Hansen included both Ca2+ and Mg2+ in the intracellular solution rather than a single blocker, and they also studied BK channels expressed from α plus β1 subunits, whereas most previous studies used only α subunits. Although it seems unlikely that these experimental differences would account for the differences in findings between previous studies and those of Schroeder and Hansen, we repeated the experiments using BK channels comprised of α plus β1 subunits with joint application of 2.5 mM Ca2+ plus 2.5 mM Mg2+, as Schroeder and Hansen did. In contrast to the findings of Schroeder and Hansen of identical I-V plots, we found marked differences in the single-channel I-V plots in the absence and presence of blockers. Consistent with previous studies, we found near linear I-V plots in the absence of blockers and greatly reduced currents and negative slopes in the presence of blockers. Hence, studies of conductance mechanisms for BK channels should exclude intracellular Ca2+/Mg2+, as they can reduce conductance and induce negative slopes.


1987 ◽  
Vol 253 (3) ◽  
pp. F476-F487 ◽  
Author(s):  
H. Sackin ◽  
L. G. Palmer

Potassium (K+) channels in the basolateral membrane of unperfused Necturus proximal tubules were studied in both cell-attached and excised patches, after removal of the tubule basement membrane by manual dissection without collagenase. Two different K+ channels were identified on the basis of their kinetics: a short open-time K+ channel, with a mean open time less than 1 ms, and a long open-time K+ channel with a mean open time greater than 20 ms. The short open-time channel occurred more frequently than the longer channel, especially in excised patches. For inside-out excised patches with Cl- replaced by gluconate, the current-voltage relation of the short open-time K+ channel was linear over +/- 60 mV, with a K+-Na+ selectivity of 12 +/- 2 (n = 12), as calculated from the reversal potential with oppositely directed Na+ and K+ gradients. With K-Ringer in the patch pipette and Na-Ringer in the bath, the conductance of the short open-time channel was 47 +/- 2 pS (n = 15) for cell-attached patches, 26 +/- 2 pS (n = 15) for patches excised (inside out) into Na-Ringer, and 36 +/- 6 pS (n = 3) for excised patches with K-Ringer on both sides. These different conductances can be partially explained by a dependence of single-channel conductance on the K+ concentration on the interior side of the membrane. In experiments with a constant K+ gradient across excised patches, large changes in Na+ at the interior side of the membrane produced no change in single-channel conductance, arguing against a direct block of the K+ channel by Na+. Finally, the activity of the short open-time channel was voltage gated, where the mean number of open channels decreased as a linear function of basolateral membrane depolarization for potentials between -60 and 0 mV. Depolarization from -60 to -40 mV decreased the mean number of open K+ channels by 28 +/- 8% (n = 6).


1982 ◽  
Vol 216 (1203) ◽  
pp. 225-251 ◽  

(i) Effects of extracellular sodium concentration, [Na] o , on endplate channel characteristics were investigated in voltage-clamped, glycerol- treated toad sartorius fibres. (ii) The relation between [Na] o (and [K] o ) and acetylcholine null potential could be reasonably well fitted by the Goldman-Hodgkin-Katz type of equation, except when [Na] o was higher than normal. Anions had no significant effect on the null potential. (iii) Endplate channel open time (ז), whether measured from miniature endplate currents or from current fluctuations induced by iontophoresis of acetylcholine, varied inversely with [Na] o . The relation between ז -1 (=α) and [Na] o could be fitted by α = αmax [Na] o / ( K m +|[Na] o ) with a K m of 92 mM. (iv) Endplate conductance, measured at the peak of endplate currents or at the peak of spontaneous miniature endplate currents, increased nonlinearly with [Na] o . (v) Single channel conductance, γ, also increased nonlinearly with [Na] o . Experimental observations at -90 mV could be fitted by the relation γ = γ max [Na] o / ( K m + [Na] o ), giving values for γ max and K m of 47 pS and 146 mM respectively. Correcting channel conductance for the contribution from potassium ions gave values of γmax and K m of 78 pS and 423 mM respectively. (vi) The results are consistent with the hypothesis that binding sites for Na ions can modulate both channel lifetime and conductance and that these sites become saturated at higher sodium concentrations.


1992 ◽  
Vol 263 (3) ◽  
pp. F392-F400 ◽  
Author(s):  
Y. Marunaka ◽  
N. Hagiwara ◽  
H. Tohda

Using the patch-clamp technique, we studied the effect of insulin on an amiloride-blockable Na channel in the apical membrane of a distal nephron cell line (A6) cultured on permeable collagen films for 10-14 days. NPo (N, number of channels per patch membrane; Po, average value of open probability of individual channels in the patch) under baseline conditions was 0.88 +/- 0.12 (SE)(n = 17). After making cell-attached patches on the apical membrane which contained Na channels, insulin (1 mU/ml) was applied to the serosal bath. While maintaining the cell-attached patch, NPo significantly increased to 1.48 +/- 0.19 (n = 17; P less than 0.001) after 5-10 min of insulin application. The open probability of Na channels was 0.39 +/- 0.01 (n = 38) under baseline condition, and increased to 0.66 +/- 0.03 (n = 38, P less than 0.001) after addition of insulin. The baseline single-channel conductance was 4pS, and neither the single-channel conductance nor the current-voltage relationship was significantly changed by insulin. These results indicate that insulin increases Na absorption in the distal nephron by increasing the open probability of the amiloride-blockable Na channel.


2000 ◽  
Vol 17 (2) ◽  
pp. 197-206 ◽  
Author(s):  
WALLACE B. THORESON ◽  
RON NITZAN ◽  
ROBERT F. MILLER

The present study uses cell-attached patch-recording techniques to study the single-channel properties of Ca2+ channels in isolated salamander photoreceptors and investigate their sensitivity to reductions in intracellular Cl−. The results show that photoreceptor Ca2+ channels possess properties similar to L-type Ca2+ channels in other preparations, including (1) enhancement of openings by the dihydropyridine agonist, (−)BayK8644; (2) suppression by a dihydropyridine antagonist, nisoldipine; (3) single-channel conductance of 22 pS with 82 mM Ba2+ as the charge carrier; (4) mean open probability of 0.1; (5) open-time distribution fit with a single exponential (τ0 = 1.1 ms) consistent with a single open state; and (6) closed time distribution fit with two exponentials (τc1 = 0.7 ms, τc2 = 25.4 ms) consistent with at least two closed states. Using a Cl−-sensitive dye to measure intracellular [Cl−], it was found that perfusion with gluconate-containing, low Cl− medium depleted intracellular [Cl−]. It was therefore possible to reduce intracellular [Cl−] by perfusion with a low Cl− solution while maintaining the extracellular channel surface in high Cl− pipette solution. Under these conditions, the single-channel conductance was unchanged, but the mean open probability fell to 0.03. This reduction can account for the 66% reduction in whole-cell Ca2+ currents produced by perfusion with low Cl− solutions. Examination of the open and closed time distributions suggests that the reduction in open probability arises from increases in closed-state dwell times. Changes in intracellular [Cl−] may thus modulate photoreceptor Ca2+ channels.


1998 ◽  
Vol 111 (6) ◽  
pp. 825-846 ◽  
Author(s):  
Toru Ishikawa ◽  
Yoshinori Marunaka ◽  
Daniela Rotin

The epithelial Na+ channel (ENaC), composed of three subunits (α, β, and γ), is expressed in several epithelia and plays a critical role in salt and water balance and in the regulation of blood pressure. Little is known, however, about the electrophysiological properties of this cloned channel when expressed in epithelial cells. Using whole-cell and single channel current recording techniques, we have now characterized the rat αβγENaC (rENaC) stably transfected and expressed in Madin-Darby canine kidney (MDCK) cells. Under whole-cell patch-clamp configuration, the αβγrENaC-expressing MDCK cells exhibited greater whole cell Na+ current at −143 mV (−1,466.2 ± 297.5 pA) than did untransfected cells (−47.6 ± 10.7 pA). This conductance was completely and reversibly inhibited by 10 μM amiloride, with a Ki of 20 nM at a membrane potential of −103 mV; the amiloride inhibition was slightly voltage dependent. Amiloride-sensitive whole-cell current of MDCK cells expressing αβ or αγ subunits alone was −115.2 ± 41.4 pA and −52.1 ± 24.5 pA at −143 mV, respectively, similar to the whole-cell Na+ current of untransfected cells. Relaxation analysis of the amiloride-sensitive current after voltage steps suggested that the channels were activated by membrane hyperpolarization. Ion selectivity sequence of the Na+ conductance was Li+ > Na+ >> K+ = N-methyl-d-glucamine+ (NMDG+). Using excised outside-out patches, amiloride-sensitive single channel conductance, likely responsible for the macroscopic Na+ channel current, was found to be ∼5 and 8 pS when Na+ and Li+ were used as a charge carrier, respectively. K+ conductance through the channel was undetectable. The channel activity, defined as a product of the number of active channel (n) and open probability (Po), was increased by membrane hyperpolarization. Both whole-cell Na+ current and conductance were saturated with increased extracellular Na+ concentrations, which likely resulted from saturation of the single channel conductance. The channel activity (nPo) was significantly decreased when cytosolic Na+ concentration was increased from 0 to 50 mM in inside-out patches. Whole-cell Na+ conductance (with Li+ as a charge carrier) was inhibited by the addition of ionomycin (1 μM) and Ca2+ (1 mM) to the bath. Dialysis of the cells with a pipette solution containing 1 μM Ca2+ caused a biphasic inhibition, with time constants of 1.7 ± 0.3 min (n = 3) and 128.4 ± 33.4 min (n = 3). An increase in cytosolic Ca2+ concentration from <1 nM to 1 μM was accompanied by a decrease in channel activity. Increasing cytosolic Ca2+ to 10 μM exhibited a pronounced inhibitory effect. Single channel conductance, however, was unchanged by increasing free Ca2+ concentrations from <1 nM to 10 μM. Collectively, these results provide the first characterization of rENaC heterologously expressed in a mammalian epithelial cell line, and provide evidence for channel regulation by cytosolic Na+ and Ca2+.


1989 ◽  
Vol 61 (1) ◽  
pp. 162-172 ◽  
Author(s):  
T. J. O'Dell ◽  
B. N. Christensen

1. Horizontal cells enzymatically isolated from retinas of the Atlantic stingray (Dasyatis sabina) were voltage-clamped using the patch electrode in the whole-cell mode. A rapid microsuperfusion system was used to apply excitatory amino acid agonists and antagonists. 2. The isolated cells responded to glutamate (GLU), kainate (KA), quisqualate (QA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Responses elicited by GLU, QA, and AMPA but not KA exhibited a concentration-dependent and concanavalin A- (Con-A) sensitive desensitization. No responses were elicited by aspartate, N-methyl-D-aspartate, or quinolinate at concentrations as high as 1.0 mM. 3. Judging from the concentration producing one-half of the maximal current response (EC50), the rank order affinities of the agonists was QA greater than or equal to GLU greater than AMPA greater than KA. Whereas KA had the lowest affinity of the agonists tested it was the most efficacious, producing the largest currents. Hill coefficients of the concentration-response data were near two for KA and GLU and near one for QA and AMPA. 4. The agonists differed in their sensitivity to various excitatory amino acid receptor antagonists. Kynurenate (KYN) produced a nearly complete block of horizontal cell responses to GLU and KA at concentrations that had little effect on QA and AMPA. Piperidine-2,3-dicarboxylic acid (cis-PDA), 1-(4-chlorobenzoyl)-piperazine-2,3-dicarboxylic acid (pCB-PzDA), and folic acid were less potent antagonists than KYN but were also better blockers of KA and GLU responses than of QA- and AMPA-elicited responses. 5. When QA, AMPA, or GLU were applied in combination with 55.0 microM KA the current was less than that produced by KA alone. The rank order potency for the inhibition of KA-elicited responses was QA greater than AMPA greater than GLU. In the presence of low concentrations of KA (1.0-20.0 microM), QA- and AMPA-elicited responses were potentiated. This potentiation was prevented by KYN. 6. Single-channel conductance and mean open time were estimated from the current noise fluctuations in the presence of agonist. The mean single-channel conductance for QA was 9 pS that was almost twice as large as the conductance for KA (5.9 pS) and GLU (5.7 pS). The mean open time in the presence of QA or GLU was approximately 1 ms, which was about one-half of that for KA (2.0 ms). 7. These results are best explained by the existence of a single receptor protein with multiple but not identical ligand-binding sites.(ABSTRACT TRUNCATED AT 400 WORDS)


2000 ◽  
Vol 116 (1) ◽  
pp. 33-46 ◽  
Author(s):  
Zhenjiang Yang ◽  
Haoxing Xu ◽  
Ningren Cui ◽  
Zhiqiang Qu ◽  
Sengthong Chanchevalap ◽  
...  

CO2 chemoreception may be related to modulation of inward rectifier K+ channels (Kir channels) in brainstem neurons. Kir4.1 is expressed predominantly in the brainstem and inhibited during hypercapnia. Although the homomeric Kir4.1 only responds to severe intracellular acidification, coexpression of Kir4.1 with Kir5.1 greatly enhances channel sensitivities to CO2 and pH. To understand the biophysical and molecular mechanisms underlying the modulation of these currents by CO2 and pH, heteromeric Kir4.1–Kir5.1 were studied in inside-out patches. These Kir4.1–Kir5.1 currents showed a single channel conductance of 59 pS with open-state probability (Popen) ∼ 0.4 at pH 7.4. Channel activity reached the maximum at pH 8.5 and was completely suppressed at pH 6.5 with pKa 7.45. The effect of low pH on these currents was due to selective suppression of Popen without evident effects on single channel conductance, leading to a decrease in the channel mean open time and an increase in the mean closed time. At pH 8.5, single-channel currents showed two sublevels of conductance at ∼1/4 and 3/4 of the maximal openings. None of them was affected by lowering pH. The Kir4.1–Kir5.1 currents were modulated by phosphatidylinositol-4,5-bisphosphate (PIP2) that enhanced baseline Popen and reduced channel sensitivity to intracellular protons. In the presence of 10 μM PIP2, the Kir4.1–Kir5.1 showed a pKa value of 7.22. The effect of PIP2, however, was not seen in homomeric Kir4.1 currents. The CO2/pH sensitivities were related to a lysine residue in the NH2 terminus of Kir4.1. Mutation of this residue (K67M, K67Q) completely eliminated the CO2 sensitivity of both homomeric Kir4.1 and heteromeric Kir4.1–Kir5.1. In excised patches, interestingly, the Kir4.1–Kir5.1 carrying K67M mutation remained sensitive to low pHi. Such pH sensitivity, however, disappeared in the presence of PIP2. The effect of PIP2 on shifting the titration curve of wild-type and mutant channels was totally abolished when Arg178 in Kir5.1 was mutated. Thus, these studies demonstrate a heteromeric Kir channel that can be modulated by both acidic and alkaline pH, show the modulation of pH sensitivity of Kir channels by PIP2, and provide information of the biophysical and molecular mechanisms underlying the Kir modulation by intracellular protons.


1989 ◽  
Vol 61 (6) ◽  
pp. 1097-1109 ◽  
Author(s):  
T. J. O'Dell ◽  
B. N. Christensen

1. Inward going membrane currents elicited by N-methyl-D-aspartate (NMDA), glutamate (GLU), and glutamate analogues were recorded from isolated catfish (Ictalurus punctatus) cone horizontal cells using the patch-clamp technique in the whole-cell mode. 2. Currents elicited by the N-methyl-D-aspartate receptor agonists NMDA, L-aspartate (ASP) or L-homocysteate (L-HCA) in nominally Mg-free saline were completely blocked by 100 microM 2-amino-5-phosphonovalerate (AP-5) but responses to non-NMDA receptor agonists kainate (KA), quisqualate (QA), or alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) in normal Mg2+ saline were unaffected. Responses to GLU were partially blocked. Kynurenic acid (1 mM) effectively blocked responses to all agonists. 3. Concentration-response curves obtained from measured responses in the presence of different NMDA receptor agonists gave Hill coefficients of near 1 indicating a single binding site for channel activation. The rank order of agonist affinity at the NMDA receptor is L-HCA greater than NMDA greater than ASP. Glycine potentiates responses to NMDA in horizontal cells. 4. The NMDA-activated channel is blocked in a voltage-dependent manner by Mg2+, Ni2+, and Co2+ and in a voltage-independent manner by Zn2+. Both the NMDA- and KA-activated channel were permeable to monovalent cations but the NMDA-activated channel appeared to have a greater permeability to Ca2+ than the KA-activated channel. 5. Concentration-response curves measured from responses to the non-NMDA receptor agonists QA, KA, and AMPA gave Hill coefficients of approximately 1.5 suggesting multiple binding sites for channel activation and cooperativity. The rank-order affinity was QA greater than AMPA greater than GLU greater than KA. KA was the most efficacious of the agonists resulting in the largest Imax. Rapid desensitization was observed only in the presence of QA, AMPA, or GLU and this desensitization could be removed by pretreatment with conconavalin A (Con A). 6. Single-channel conductance and mean open time were measured from the fluctuations in current noise in the presence of the agonists. The single-channel conductance estimated from the slope of a linear regression obtained from a plot of the variance of the conductance versus the whole-cell conductance measured in NMDA and ASP was 4.7 pS. The mean channel open time was 1.3 ms. These same parameters measured for KA and QA were 5.7 and 5.9 pS and 1.1 to 1.3 ms, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)


1988 ◽  
Vol 60 (2) ◽  
pp. 645-663 ◽  
Author(s):  
M. L. Mayer ◽  
G. L. Westbrook ◽  
L. Vyklicky

1. Mouse hippocampal neurons in dissociated culture were grown at low density on previously plated hippocampal glial cell cultures and voltage clamped using the tight seal whole-cell patch-clamp technique. Flow pipes were used to rapidly exchange the extracellular solution, and to apply N-methyl-D-aspartic acid (NMDA) and some NMDA antagonists. Fluctuation analysis was used to estimate changes in the behavior of NMDA-activated ion channels during application of antagonists. In the presence of NMDA control spectra were well fit by single Lorentzian functions consistent with mean open times of 5-6 ms. 2. Two antagonists thought to act at the NMDA receptor agonist recognition site, 2-amino-5-phosphonovaleric acid (AP5) and kynurenic acid, did not produce changes in the mean open time or single channel conductance, consistent with their action as competitive antagonists. Onset of antagonism and recovery from the action of both AP5 and kynurenic acid was rapid and complete within 1 s. However, raising the extra-cellular glycine concentration, from 1 microM to 1 mM, reduced the potency of 100 microM kynurenic acid as an NMDA antagonist, suggesting that kynurenate has an additional action as a competitive antagonist at the glycine modulatory site on NMDA receptor channels. 3. In the presence of 150 microM magnesium NMDA spectra recorded at -60 mV were fit by double Lorentzian functions, consistent with single-channel events consisting of bursts of openings lasting 3.3 ms in duration, interrupted by blocking and unblocking events of average duration 0.18 ms. The onset and recovery from magnesium antagonism was rapid, and complete within 1 s, but was highly voltage dependent and at +40 mV magnesium (150 microM) failed to produce NMDA antagonism. These results are consistent with a voltage-dependent channel block of NMDA receptor channels produced by binding of magnesium to a site within the ion channel. 4. Zinc (30 microM) was a potent NMDA antagonist at both -60 and +40 mV, and at either potential appeared to reduce the mean open time of NMDA-activated ion channels from about 5 ms to approximately 3 ms. Over the frequency range measured, 1-1,000 Hz, NMDA spectra were well fit by single Lorentzians during zinc antagonism, in contrast to results obtained with magnesium. The mean single channel conductance also decreased in the presence of zinc to approximately 75% of control. Onset of antagonism and recovery from the action of zinc was rapid and complete within 1 s.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document