Superoxide dismutase: tissue, cellular, and subcellular distribution in adult canine heart

1985 ◽  
Vol 249 (5) ◽  
pp. C379-C384 ◽  
Author(s):  
A. M. Spanier ◽  
W. B. Weglicki ◽  
D. L. Stiers ◽  
H. P. Misra

Cell-free extracts of canine myocardial tissue were found to contain two biochemically and electrophoretically distinct superoxide dismutases (SOD), an enzyme that provides defense against the deleterious effect of superoxide radicals (O2.-). Polyacrylamide gel (7.5%) electrophoresis revealed two distinct bands of SOD activity: a slower moving band [retardation factor (Rf) = 0.4] resembling the manganese SOD found in bacteria and mitochondria (which is not inhibited by 2.5 mM cyanide) and a faster moving band (Rf = 0.75) that is sensitive to cyanide. In contrast, extracts from isolated adult canine cardiac myocytes were found to contain only the cyanide-insensitive SOD. Extracts of whole myocardium and isolated cardiac myocytes contain 22.3 +/- 1.2 and 27.0 +/- 1.5 U cyanide-insensitive SOD/mg protein, respectively. However, the activity of cyanide-sensitive SOD in these fractions is 7.9 +/- 2.0 (tissue) and 1.5 +/- 1.4 (cells) U/mg protein. Cardiac myocyte SOD activity was particulate in nature, and the major part of the SOD activity was associated with heavy mitochondrial fractions. The biologic significance of this higher activity of SOD in the heavier mitochondrial fraction remains to be elucidated.

2003 ◽  
Vol 94 (3) ◽  
pp. 1169-1176 ◽  
Author(s):  
Ronald K. Evans ◽  
Dean D. Schwartz ◽  
L. Bruce Gladden

The purpose of this study was to determine lactate transport kinetics in single isolated rat ventricular cardiac myocytes after 1) 8 wk of myocardial volume overload (MVO) and 2) congestive heart failure (CHF). Twenty male Sprague-Dawley rats were assigned to one of four groups: myocardial hypertrophy (MH), MH sham (MHS), CHF, or CHF sham (CHFS). A chronic MVO was induced in the MH and CHF groups by an infrarenal arteriovenous fistula. Postdeath heart and lung weights were significantly greater ( P < 0.05) for the MH and CHF groups compared with controls. Isolated cardiac myocytes were loaded with BCECF to determine intracellular pH (pHi) changes after the addition of lactate to the extracellular superfusate. Alterations in pHi with the addition of varied lactate concentrations were attenuated 72–89% by 5.0 mM α-cyano-4-hydroxycinnamate. Significant differences ( P < 0.05) were found in estimated maximal lactate transport rates between the experimental and sham groups (MH = 19.4 ± 1.1 nmol · μl−1 · min−1vs. MHS = 15.1 ± 1.1 nmol · μl−1 · min−1; CHF = 20.2 ± 2.0 nmol · μl−1 · min−1vs. CHFS = 14.0 ± 0.9 nmol · μl−1 · min−1). Western blot analysis confirmed a 270% increase in monocarboxylate symport protein 1 (MCT1) protein content in CHF compared with CHFS rats. The results of this study suggest that MH and CHF induced by MVO engender a greater maximal lactate transport capacity across the cardiac myocyte sarcolemma along with an increase in MCT1 protein content. These alterations would likely benefit the cell by attenuating intracellular acidification during a period of increased myocardial load.


1978 ◽  
Vol 235 (5) ◽  
pp. E461 ◽  
Author(s):  
A H Burns ◽  
W J Reddy

The inclusion of plasma levels of the natural amino acids plus 2.5 mM glutamate and 2.5 mM malate (PAAGM) raised the oxygen consumption and glucose oxidation of isolated cardiac myocytes in phosphate buffered saline. The addition of calcium (1.25 mM) and magnesium (0.66 mM) potentiated the stimulatory effect of PAAGM on glucose oxidation and oxygen consumption, PAAGM did not alter the shape of the dose-response curve for glucose oxidation by the isolated cardiac myocyte preparation. It did increase the amount of glucose oxidation at any given media glucose concentration up to 20 mM. PAAGM also increased the rate of lactate oxidation by the isolated cardiac myocyte preparation. PAAGM did not stimulate the oxidation of octanoate unless there was glucose present in the incubation media as well. Measurements of the concentrations of free amino acids indicated higher levels in myocytes incubated in PAAGM than in myocytes incubated in phosphate buffered saline. The data suggest that substrate metabolism by the isolated cardiac myocyte preparation can be influenced by the presence of plasma constituents that would be available to the myocardium in vivo.


1994 ◽  
Vol 266 (1) ◽  
pp. H128-H136 ◽  
Author(s):  
M. Buerke ◽  
A. S. Weyrich ◽  
A. M. Lefer

We exposed isolated rat cardiac myocytes to 20 min of hypoxia followed by 20 min of reoxygenation and observed the effect of supernatants of stimulated neutrophils [polymorphonuclear leukocytes (PMNs)] given at the beginning of reoxygenation. PMN supernatants induced cardiac myocyte injury, which was characterized by a significant (P < 0.01) reduction in cell viability to 53 +/- 3%, vs. 84 +/- 3% in rat myocytes subjected to hypoxia-reoxygenation (H/R) alone. The PMN supernatants also resulted in elevated creatine kinase (CK) activities in the myocyte medium. To examine specific PMN-released mediators that may contribute to this cell death, we studied the effects of hydrogen peroxide (H2O2), elastase, and platelet-activating factor on H/R cardiac myocytes. Incubation of myocytes after hypoxia with 10, 50, and 100 microM H2O2 decreased viability in a concentration-dependent manner (from 83 +/- 2 to 37 +/- 2%; P < 0.01). CK release of H/R myocytes was also significantly increased by 100 microM H2O2 (to 28 +/- 5 from 12 +/- 1% for H/R alone; P < 0.01). Similarly, elastase (5 micrograms/ml) given after hypoxia significantly reduced cardiac myocyte viability during reoxygenation (viability 58 +/- 1 vs. 85 +/- 1% H/R alone; P < 0.05) and increased CK release (to 29 +/- 3 from 11 +/- 1% for H/R alone; P < 0.01), an effect that was abolished by L-680,833, an elastase inhibitor. Unlike H2O2 and elastase, platelet-activating factor had no significant effect on myocyte viability or CK release after H/R.(ABSTRACT TRUNCATED AT 250 WORDS)


2000 ◽  
Vol 278 (6) ◽  
pp. H1840-H1847 ◽  
Author(s):  
Lois Jane Heller ◽  
David E. Mohrman ◽  
Joseph R. Prohaska

Passive stiffness characteristics of isolated cardiac myocytes, papillary muscles, and aortic strips from male Holtzman rats fed a copper-deficient diet for ∼5 wk were compared with those of rats fed a copper-adequate diet to determine whether alterations in these characteristics might accompany the well-documented cardiac hypertrophy and high incidence of ventricular rupture characteristic of copper deficiency. Stiffness of isolated cardiac myocytes was assessed from measurements of cellular dimensional changes to varied osmotic conditions. Stiffness of papillary muscles and aortic strips was determined from resting length-tension analyses and included steady-state characteristics, dynamic viscoelastic stiffness properties, and maximum tensile strength. The primary findings were that copper deficiency resulted in cardiac hypertrophy with increased cardiac myocyte size and fragility, decreased cardiac myocyte stiffness, and decreased papillary muscle passive stiffness, dynamic stiffness, and tensile strength and no alteration in aortic connective tissue passive stiffness or tensile strength. These findings suggest that a reduction of cardiac myocyte stiffness and increased cellular fragility could contribute to the reduced overall cardiac tissue stiffness and the high incidence of ventricular aneurysm observed in copper-deficient rats.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
V Montiel ◽  
R Bella ◽  
L Michel ◽  
E Robinson ◽  
J.C Jonas ◽  
...  

Abstract Background Pathological remodeling of the myocardium has long been known to involve oxidant signaling, but so far, strategies using systemic anti-oxidants have generally failed to prevent it. Aquaporins are a family of transmembrane water channels with thirteen isoforms currently known. Some isoforms have been implicated in oxidant signaling. AQP1 is the most abundant aquaporin in cardiovascular tissues but its specific role in cardiac remodeling remains unknown. Purpose We tested the role of AQP1 as a key regulator of oxidant-mediated cardiac remodeling amenable to targeted pharmacological therapy. Methods We used mice with genetic deletion of Aqp1 (and wild-type littermate), as well as primary isolates from the same mice and human iPSC/Engineered Heart Tissue to test the role of AQP1 in pro-hypertrophic signaling. Human cardiac myocyte-specific (PCM1+) expression of AQP's and genes involved in hypertrophic remodeling was studied by RNAseq and bioinformatic GO pathway analysis. Results RNA sequencing from human cardiac myocytes revealed that the archetypal AQP1 is a major isoform. AQP1 expression correlates with the severity of hypertrophic remodeling in patients with aortic stenosis. The AQP1 channel was detected at the plasma membrane of human and mouse cardiac myocytes from hypertrophic hearts, where it colocalizes with the NADPH oxidase-2 (NOX2) and caveolin-3. We show that hydrogen peroxide (H2O2), produced extracellularly, is necessary for the hypertrophic response of isolated cardiac myocytes and that AQP1 facilitates the transmembrane transport of H2O2 through its water pore, resulting in activation of oxidant-sensitive kinases in cardiac myocytes. Structural analysis of the amino acid residues lining the water pore of AQP1 supports its permeation by H2O2. Deletion of Aqp1 or selective blockade of AQP1 intra-subunit pore (with Bacopaside II) inhibits H2O2 transport in mouse and human cells and rescues the myocyte hypertrophy in human induced pluripotent stem cell-derived engineered heart muscle. This protective effect is due to loss of transmembrane transport of H2O2, but not water, through the intra-subunit pore of AQP1. Treatment of mice with clinically-approved Bacopaside extract (CDRI08) inhibitor of AQP1 attenuates cardiac hypertrophy and fibrosis. Conclusion We provide the first demonstration that AQP1 functions as an aqua-peroxiporin in primary rodent and human cardiac parenchymal cells. We show that cardiac hypertrophy is mediated by the transmembrane transport of H2O2 through the AQP1 water channel. Our studies open the way to complement the therapeutic armamentarium with specific blockers of AQP1 for the prevention of adverse remodeling in many cardiovascular diseases leading to heart failure. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): FRS-FNRS, Welbio


2003 ◽  
Vol 476 (1-2) ◽  
pp. 45-54 ◽  
Author(s):  
Adrian Au ◽  
William E. Louch ◽  
Gregory R. Ferrier ◽  
Susan E. Howlett

1998 ◽  
Vol 18 (12) ◽  
pp. 7243-7258 ◽  
Author(s):  
Madhu Gupta ◽  
Radovan Zak ◽  
Towia A. Libermann ◽  
Mahesh P. Gupta

ABSTRACT The expression of the α-myosin heavy chain (MHC) gene is restricted primarily to cardiac myocytes. To date, several positive regulatory elements and their binding factors involved in α-MHC gene regulation have been identified; however, the mechanism restricting the expression of this gene to cardiac myocytes has yet to be elucidated. In this study, we have identified by using sequential deletion mutants of the rat cardiac α-MHC gene a 30-bp purine-rich negative regulatory (PNR) element located in the first intronic region that appeared to be essential for the tissue-specific expression of the α-MHC gene. Removal of this element alone elevated (20- to 30-fold) the expression of the α-MHC gene in cardiac myocyte cultures and in heart muscle directly injected with plasmid DNA. Surprisingly, this deletion also allowed a significant expression of the α-MHC gene in HeLa and other nonmuscle cells, where it is normally inactive. The PNR element required upstream sequences of the α-MHC gene for negative gene regulation. By DNase I footprint analysis of the PNR element, a palindrome of two high-affinity Ets-binding sites (CTTCCCTGGAAG) was identified. Furthermore, by analyses of site-specific base-pair mutation, mobility gel shift competition, and UV cross-linking, two different Ets-like proteins from cardiac and HeLa cell nuclear extracts were found to bind to the PNR motif. Moreover, the activity of the PNR-binding factor was found to be increased two- to threefold in adult rat hearts subjected to pressure overload hypertrophy, where the α-MHC gene is usually suppressed. These data demonstrate that the PNR element plays a dual role, both downregulating the expression of the α-MHC gene in cardiac myocytes and silencing the muscle gene activity in nonmuscle cells. Similar palindromic Ets-binding motifs are found conserved in the α-MHC genes from different species and in other cardiac myocyte-restricted genes. These results are the first to reveal a role of the Ets class of proteins in controlling the tissue-specific expression of a cardiac muscle gene.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
John E Baker ◽  
Jidong Su ◽  
Stacy Koprowski ◽  
Anuradha Dhanasekaran ◽  
Tom P Aufderheide ◽  
...  

Thrombopoietin confers immediate protection against injury caused by ischemia/reperfusion in the rat heart at a dose that does not increase platelet levels. Eltrombopag is a small molecule agonist of the thrombopoietin receptor; the physiological target of thrombopoietin. Administration of thrombopoietin and eltrombopag result in a dose- and time-dependent increase in platelet counts in patients with thrombocytopenia. However, the ability of eltrombopag and thrombopoietin to immediately protect human cardiac myocytes against injury and the mechanisms underlying myocyte protection are not known. Human cardiac myocytes (7500 cells, n=10/group) were treated with eltrombopag (0.1- 30.0 μM) or thrombopoietin ( 0.1 - 30.0 ng/ml) and then subjected to 5 hours of hypoxia (95% N 2 /5%CO 2 ) and 16 hours of reoxygenation to determine their ability to confer resistance to necrotic and apoptotic myocardial injury . The thrombopoietin receptor (c-Mpl) was detected in unstimulated human cardiac myocytes by western blotting. Eltrombopag and thrombopoietin confer immediate protection to human cardiac myocytes against injury from hypoxia/reoxygenation by decreasing necrotic and apoptotic cell death in a concentration-dependent manner with an optimal concentration of 3 μM for eltrombopag and 1.0 ng/ml for thrombopoietin. The extent of protection conferred to cardiac myocytes with eltrombopag is equivalent to that of thrombopoietin. Eltrombopag and thrombopoietin activate multiple pro-survival pathways; inhibition of JAK-2 (AG-490, 10 μM), p38 MAPK (SB203580, 10 μM), p44/42 MAPK (PD98059, 10 μM), Akt/PI 3 kinase (Wortmannin, 100 nM), and src kinase (PP1, 20 μM) prior to and during hypoxia abolished cardiac myocyte protection by eltrombopag and thrombopoietin. These inhibitors had no effect on hypoxia/reoxygenation injury in myocytes when used alone. Eltrombopag and thrombopoietin may represent important and potent agents for immediately and substantially increasing protection of human cardiac myocytes, and may offer long-lasting benefit through activation of pro-survival pathways during ischemia.


Sign in / Sign up

Export Citation Format

Share Document