Calcium transients and resting levels in isolated smooth muscle cells as monitored with quin 2

1986 ◽  
Vol 250 (5) ◽  
pp. C779-C791 ◽  
Author(s):  
D. A. Williams ◽  
F. S. Fay

The Ca2+-sensitive dye quin 2 was used to monitor Ca2+ levels and to follow Ca2+ transients in suspensions of isolated toad (Bufo marinus) smooth muscle cells, whose contractile activity was monitored with a Coulter counter. Single cells were not utilized to follow Ca2+ changes involved with contraction because of problems of rapid dye bleaching and due to photosensitization of smooth muscle cells loaded with quin 2. High levels of quin 2 loading (2-5 mM) severely prolonged (time course increase greater than 3 times), or completely inhibited, contractile responses to carbachol or potassium depolarization. Lower levels (less than 1 mM) produced adequate fluorescent signals, even at the single cell level, and allowed contractile responses of normal magnitude, although with somewhat prolonged (2-3 times) time course. Resting Ca2+ concentrations determined using quin 2 at these lower levels were 129 +/- 3 nM, a value that closely coincided with that measured in the same cell type using Ca-sensitive microelectrodes, or an alternate, more highly fluorescent dye, Fura-2. Resting Ca2+ was highly dependent on the extracellular Ca2+ concentration that appeared to effect intracellular Ca2+ (Cai2+) both by altering the driving force on Ca2+ cross the membrane, as well as the Ca2+ permeability of the cell itself. A small but significant relaxation was observed in response to the lowering of cytoplasmic Ca2+ below resting levels. After carbachol or K+ addition, fluorescent transients peaked significantly before the onset of contraction, which was also transient. Isoproterenol, a known relaxant of these cells, caused a small decrease in Cai2+ (approximately 40 nM) below rest, when applied in maximal dosage (10(-4) M). Isoproterenol also consistently diminished the Ca2+ transient induced by excitatory stimuli such as carbachol or K+. These results indicate that changes in contractility may be directly linked to changes in free cytoplasmic Ca2+ in smooth muscle cells.

1987 ◽  
Vol 252 (4) ◽  
pp. C418-C427 ◽  
Author(s):  
D. M. Warshaw ◽  
W. J. McBride ◽  
M. S. Hubbard

Most studies of skinned smooth muscle have been performed in whole tissue preparations. In this study, we report the development of a chemically skinned single smooth muscle cell preparation from the toad, Bufo marinus, stomach. Isolated smooth muscle cells were skinned using saponin. The effect of various ionic environments (i.e., changing free Ca2+ and MgATP2-) on skinned cell contractile response was assessed by measuring cell lengths from populations of cells using a computer-assisted length-measuring system. Comparison of cell length histograms were used to determine the extent of cell shortening in response to a given ionic perturbation. Once skinned, the single cells shortened with a sensitivity to free calcium (ED50 = 1.5 microM Ca2+) that was three orders of magnitude lower than potassium depolarized cells (ED50 = 1.5 mM Ca2+). In addition to the calcium sensitivity, the effect of free MgATP2- on the extent of cell shortening was investigated. The extent of cell shortening was dependent on free MgATP2- with the maximum shortening response occurring at MgATP2- greater than 1 mM.


2010 ◽  
Vol 30 (10) ◽  
pp. 1890-1896 ◽  
Author(s):  
Jan-Marcus Daniel ◽  
Wiebke Bielenberg ◽  
Philipp Stieger ◽  
Soenke Weinert ◽  
Harald Tillmanns ◽  
...  

1996 ◽  
Vol 270 (2) ◽  
pp. C488-C499 ◽  
Author(s):  
R. M. Lynch ◽  
W. Carrington ◽  
K. E. Fogarty ◽  
F. S. Fay

Hexokinase isoform I binds to mitochondria of many cell types. It has been hypothesized that this association is regulated by changes in the concentrations of specific cellular metabolites. To study the distribution of hexokinase in living cells, fluorophore-labeled functional hexokinase I was prepared. After microinjection into A7r5 smooth muscle cells, hexokinase localized to distinct structures identified as mitochondria. The endogenous hexokinase demonstrated a similar distribution with the use of immunocytochemistry. 2-Deoxyglucose elicited an increase in glucose 6-phosphate (G-6-P) and a decrease in ATP levels and diminished hexokinase binding to mitochondria in single cells. 3-O-methylglucose elicited slowly developing decreases in all three parameters. In contrast, cyanide elicited a rapid decrease in both ATP and hexokinase binding. Analyses of changes in metabolite levels and hexokinase binding indicate a positive correlation between binding and cell energy state as monitored by ATP. On the other hand, only in the presence of 2-deoxyglucose was the predicted inverse correlation between binding and G-6-P observed. Unlike the relatively large changes in distribution observed with the fluorescent-injected hexokinase, cyanide caused only a small decrease in the localization of endogenous hexokinase with mitochondria. These findings suggest that changes in the concentrations of specific metabolites can alter the binding of hexokinase I to specific sites on mitochondria. Moreover, the apparent difference in sensitivity of injected and endogenous hexokinase to changes in metabolites may reflect the presence of at least two classes of binding mechanisms for hexokinase, with differential sensitivity to metabolites.


1999 ◽  
Vol 277 (6) ◽  
pp. C1284-C1290 ◽  
Author(s):  
Hamid I. Akbarali ◽  
Hemant Thatte ◽  
Xue Dao He ◽  
Wayne R. Giles ◽  
Raj K. Goyal

An inwardly rectifying K+ conductance closely resembling the human ether-a-go-go-related gene (HERG) current was identified in single smooth muscle cells of opossum esophageal circular muscle. When cells were voltage clamped at 0 mV, in isotonic K+ solution (140 mM), step hyperpolarizations to −120 mV in 10-mV increments resulted in large inward currents that activated rapidly and then declined slowly (inactivated) during the test pulse in a time- and voltage- dependent fashion. The HERG K+ channel blockers E-4031 (1 μM), cisapride (1 μM), and La3+ (100 μM) strongly inhibited these currents as did millimolar concentrations of Ba2+. Immunoflourescence staining with anti-HERG antibody in single cells resulted in punctate staining at the sarcolemma. At membrane potentials near the resting membrane potential (−50 to −70 mV), this K+ conductance did not inactivate completely. In conventional microelectrode recordings, both E-4031 and cisapride depolarized tissue strips by 10 mV and also induced phasic contractions. In combination, these results provide direct experimental evidence for expression of HERG-like K+ currents in gastrointestinal smooth muscle cells and suggest that HERG plays an important role in modulating the resting membrane potential.


1986 ◽  
Vol 251 (3) ◽  
pp. C474-C481 ◽  
Author(s):  
S. P. Driska ◽  
R. Porter

A new method is described for the preparation of viable, elongated smooth muscle cells from the swine carotid artery. Cells were prepared by papain digestion of pressurized arteries in calcium-free solution. After digestion, the arteries were everted, and fine strips were teased from the intimal surface of the media in calcium-free solution, releasing single cells. Viability was assessed by exclusion of trypan blue and by appearance under phase-contrast microscopy. By these criteria, approximately 20% of the isolated cells were viable. The most distinguishing and unexpected characteristic of these cells was their length. Mean length of the relaxed viable cells was 240.4 +/- 47.4 microns (SD, n = 76), which is much longer than previously reported for arterial smooth muscle cells. Calcium (1.6 mM) caused most of the viable cells to contract slightly, and the mean cell length in calcium was 194.4 +/- 57.7 microns. Cells in 1.6 mM calcium contracted substantially in response to 10 microM histamine or the calcium ionophore A23187 (10 microM), demonstrating that histamine receptors and the contractile apparatus were still functional.


1993 ◽  
Vol 264 (6) ◽  
pp. G1066-G1076 ◽  
Author(s):  
T. Shimada

The voltage-dependent Ca2+ current was studied in enzymatically dispersed guinea pig gallbladder smooth muscle cells using the whole cell patch-clamp technique. Depolarizing voltage (V) steps induced an inward current (I) that was carried by Ca2+. The threshold potential was -40 to -30 mV, the maximal current was observed at +10 to +20 mV, and the reversal potential was around +80 mV. I-V curves obtained with holding potentials of -80 and -40 mV were not significantly different. This current had a high sensitivity to dihydropyridine drugs, and the Ba2+ or Sr2+ current was larger than the Ca2+ current. Activation was accelerated by increasing the membrane potential. In general, the time course of decay was well fitted by the sum of two exponentials, but consideration of a third (ultra-slow) decay component was also necessary when the current generated by a 2-s command pulse was analyzed. Superimposition of activation and inactivation curves showed the presence of a significant window current. Carbachol suppressed the Ca2+ current only when the pipette contained a low concentration of ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. These results show that the L-type Ca2+ current is dominant in gallbladder smooth muscle cells and may contribute to excitation-contraction coupling.


1991 ◽  
Vol 55 ◽  
pp. 316
Author(s):  
Yosimitsu Komatsu ◽  
Kazuko Ohtuka ◽  
Hisayuki Ohata ◽  
Toshinori Yamamoto ◽  
Kazutaka Momose

Sign in / Sign up

Export Citation Format

Share Document