Adenosine 3',5'-cyclic monophosphate stimulates chloride secretion in A6 epithelia

1986 ◽  
Vol 251 (5) ◽  
pp. C810-C814 ◽  
Author(s):  
M. Yanase ◽  
J. S. Handler

Basal and aldosterone-stimulated short-circuit current (Isc) of A6 epithelia are known to be equivalent to net apical to basal Na flux and are completely inhibited by 0.05 mM amiloride added to the solution bathing the apical surface of the epithelium. In the absence of amiloride, the Isc stimulated by adenosine 3',5'-cyclic monophosphate (cAMP) is also equivalent to net apical to basal Na flux. However, amiloride does not completely inhibit the cAMP-stimulated Isc. In this study, the cAMP-stimulated, amiloride-insensitive Isc was characterized, using vasopressin or forskolin to raise cell cAMP. After basal Isc is inhibited by amiloride, forskolin stimulates Isc, conductance, and bidirectional 36Cl flux. Stimulation of Isc depends on the presence of both Na and Cl; stimulation of conductance depends on the presence of Cl. 36Cl flux studies showed that the cAMP-stimulated, amiloride-insensitive Isc is equivalent to net Cl flux. It is inhibited by ouabain and by furosemide or bumetanide added to the solution bathing the basal surface of the epithelium. In view of the effect of cAMP in some other epithelia, we suggest that cAMP activates apical membrane Cl channels that are in series with a Na-K-Cl cotransporter in the basolateral plasma membrane.

1988 ◽  
Vol 254 (1) ◽  
pp. R27-R32 ◽  
Author(s):  
J. I. Scheide ◽  
J. A. Zadunaisky

The effect of atriopeptin II (ANF) on the in vitro opercular epithelium was investigated by use of short-circuit current techniques. Serosal addition of ANF stimulates chloride secretion (short-circuit current) 19% above control values with a 7% increase in tissue conductance. Mucosal addition of ANF to the opercular epithelium was without effect. The ANF stimulation of the current was dose dependent with a maximum at 10(-7) M. The addition of ANF had no effect on the current or the conductance of opercular epithelia bathed in Cl--free Ringer. The opercular current could be stimulated above the ANF response by isoproterenol (10(-6) M). Pretreatment of the opercular epithelium with propranolol (10(-5) M) did not inhibit the stimulation of the short-circuit current by ANF but did inhibit the isoproterenol response indicating that the ANF stimulatory activity was independent of the beta-adrenergic receptors. The ANF-stimulated short-circuit current was found in operculi pretreated with tetrodotoxin (10(-6) or 10(-5) M) or diltiazem (10(-4) M) indicating the ANF response was not due to nerve stimulation. Pretreatment of opercular tissue with dibutyryl adenosine 3',5'-cyclic monophosphate, 8-bromoadenosine 3',5'-cyclic monophosphate, or 8-bromoguanosine 3',5'-cyclic monophosphate (10(-4) M) had no effect on the ANF stimulatory response. Opercular epithelia from short-term freshwater-adapted killifish also showed the ANF-induced response. The stimulation of chloride secretion in Fundulus heteroclitus chloride cells by ANF may have a role in teleost ion regulation.


1986 ◽  
Vol 250 (3) ◽  
pp. C517-C522 ◽  
Author(s):  
M. Yanase ◽  
J. S. Handler

To evaluate the role of protein kinase C in sodium transport via amiloride-sensitive sodium channels, we studied the effect of activators of protein kinase C on short-circuit current in epithelia formed by A6 cells in culture. In A6 epithelia, short-circuit current is equivalent to net sodium transport and is blocked by low concentrations of amiloride added to the solution bathing the apical surface. After any of four different activators of protein kinase C [phorbol 12,13-dibutyrate (20 ng/ml), phorbol 12-myristate 13-acetate (20 ng/ml), 1-oleoyl-2-acetylglycerol (50 micrograms/ml), and mezerein (10 ng/ml)] was added to the solution bathing the apical surface, short-circuit current fell, and electrical resistance rose. Nystatin added to the apical solution reversed the inhibition of short-circuit current, indicating that activators of protein kinase C inhibited transport at amiloride-sensitive sodium channels in the apical plasma membrane. Under some conditions, the activators also stimulated amiloride-insensitive short-circuit current. The ion transport represented by the amiloride-insensitive short-circuit current appears to be the result of basal to apical transport of chloride, but this has not been established conclusively.


1995 ◽  
Vol 269 (5) ◽  
pp. L561-L566 ◽  
Author(s):  
B. Q. Shen ◽  
R. J. Mrsny ◽  
W. E. Finkbeiner ◽  
J. H. Widdicombe

We have tested two hypotheses: 1) the cystic fibrosis transmembrane conductance regulator (CFTR) represents the predominant Cl conductance in the apical membrane of human tracheal epithelium, and 2) CFTR in this tissue is close to maximally activated under baseline conditions. In support of the first hypothesis, we found 1) when the level of differentiation of cultures was varied by varying the culture conditions, there was a significant positive correlation between the levels of CFTR and the magnitude of mediator-induced Cl secretion. 2) Amiloride-insensitive baseline short-circuit current (Isc) and mediator-induced increases in Isc were inhibited by diphenylamine-2-carboxylic acid (DPAC) but not by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), a pharmacology consistent with passage of apical membrane Cl current through CFTR; Ca-activated Cl channels are inhibited by DIDS but not by DPAC. 3) Raising temperature from 22 degrees to 37 degrees C increased 125I efflux, and this increase was inhibited by DPAC and blockers of protein kinase A, but not by DIDS or 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester. In support of the second hypothesis, we have earlier shown [M. Yamaya, W.E. Finkbeiner, S.Y. Chun, and J.H. Widdicombe. Am. J. Physiol. 262 (Lung Cell. Mol. Physiol. 6): L713-L724, 1992] that adenosine 3',5'-cyclic monophosphate (cAMP)-elevating agents are essentially without effect on Isc across primary cultures of human tracheal epithelium. Here, we further show that these agents are also usually without effect on 125I efflux; the mean increase in efflux in response to elevating cAMP was approximately 20% that of raising temperature from 22 degrees to 37 degrees C.


1997 ◽  
Vol 273 (1) ◽  
pp. C148-C160 ◽  
Author(s):  
R. W. Freel ◽  
M. Hatch ◽  
N. D. Vaziri

The ability of a Cl-secreting epithelium to support net secretion of an anion other than a halide was investigated with 35SO4 flux measurements across the isolated, short-circuited rabbit distal colon. In most experiments, 36Cl fluxes were simultaneously measured to validate the secretory capacity of the tissues. Serosal addition of dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP, 0.5 mM) stimulated a sustained net secretion of SO4 (about -3.0 nmol.cm-2.h-1 from a 0.20 mM solution) via an increase in the serosal-to-mucosal unidirectional flux, whereas Ca ionophore A-23187 (1 microM, serosal) produced a more transient stimulation of SO4 and Cl secretion. Net adenosine 3',5'-cyclic monophosphate (cAMP)-dependent SO4 and Cl secretion were strongly voltage sensitive, principally through the potential dependence of the serosal-to-mucosal fluxes, indicating an electrogenic transport process. Symmetrical replacement of either Na, K, or Cl inhibited cAMP-dependent SO4 secretion, whereas HCO3-free buffers had no effect on SO4 secretion. Serosal bumetanide (50 microM) or furosemide (100 microM) reduced DBcAMP-stimulated SO4 and Cl secretion, whereas serosal 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid or 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (50 microM) blocked DBcAMP-induced SO4 secretion while enhancing net Cl secretion and short-circuit current. Mucosal 5-nitro-2-(3-phenylpropylamino)benzoic acid partially inhibited SO4 secretion and completely inhibited Cl secretion. It is concluded that secretagogue-stimulated SO4 secretion, like Cl secretion, may be an electrogenic process mediated by diffusive efflux through an apical anion conductance. Cellular accumulation of SO4 across the basolateral membrane appears to be achieved by a mechanism that is distinct from that employed by Cl.


1993 ◽  
Vol 264 (1) ◽  
pp. C161-C168 ◽  
Author(s):  
W. W. Reenstra

Pretreating confluent T84 cells with the phorbol ester phorbol 12-myristate 13-acetate (PMA) inhibits adenosine 3',5'-cyclic monophosphate (cAMP)- and carbachol-induced Cl secretion. Both a sustained short-circuit current (Isc), seen after the addition of 50 microM 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate (CPT-cAMP) and 100 microM 3-isobutyl-1-methylxanthine (IBMX), and a transient current, seen after the subsequent addition of 100 microM carbachol, are inhibited by 80% following pretreatment with 100 nM PMA for 2 h. Pretreatment with PMA has no effect on the level of cystic fibrosis transmembrane conductance regulator protein or apical cAMP-dependent Cl conductance. Carbachol does not induce an increase in apical Cl conductance. Basolateral K conductance was measured in monolayers treated with apical nystatin and exposed to a K gradient. Agonist-independent K conductance is 10-fold greater in Cl media than in gluconate media. Pretreatment with PMA inhibits agonist-independent K conductance by 57% in Cl media but stimulates K conductance by 1.9-fold in gluconate media. The addition of carbachol induces a transient increase in basolateral K conductance, and pretreatment with PMA inhibits the agonist-dependent K conductance by 66% in Cl media and by 92% in gluconate media. In Cl media, serosal barium, at 3 mM, inhibits agonist-independent K conductance but has no significant effect on the carbachol-induced conductance. In nonpermeabilized monolayers, serosal barium inhibits the cAMP-dependent Isc by 56% but has no effect on the carbachol-induced Isc. These results demonstrate that the primary effect of PMA on Cl secretion is not inhibition of apical Cl channels but inhibition of basolateral K channels.(ABSTRACT TRUNCATED AT 250 WORDS)


1986 ◽  
Vol 250 (4) ◽  
pp. C646-C650 ◽  
Author(s):  
S. R. Shorofsky ◽  
M. Field ◽  
H. A. Fozzard

Na-selective microelectrodes were employed to investigate the mechanism of Cl secretion by canine tracheal epithelium. In control tissues with a mean short-circuit current (Isc) of 30.1 microA/cm2, the intracellular Na activity (aiNa) was 10.7 mM. Following steady-state stimulation of Cl secretion with epinephrine (Isc = 126.4 microA/cm2), aiNa was 21.3 mM. These data indicate that there is sufficient energy in the Na gradient to drive Cl secretion by this tissue. When analyzed with simple kinetic models for the Na-K pump, they also suggest that the basolateral entry step involves the Na-K-2Cl cotransporter.


1986 ◽  
Vol 250 (3) ◽  
pp. F511-F515 ◽  
Author(s):  
R. Keeler ◽  
N. L. Wong

The effects of prostaglandin E2 (PGE2) on the transport of sodium and chloride were studied in cultured A6 renal epithelial cells. PGE2 on the basolateral but not the apical surface increased transmonolayer short-circuit current (Isc) and conductance. These changes could not be inhibited with amiloride or furosemide in the apical medium. Flux measurements showed that although Isc and net flux of sodium were equal in unstimulated cells, after addition of PGE2 the current increased with no corresponding changes in bidirectional or net flux of sodium. Immersing the cells in sodium-free or chloride-free media inhibited the effects of PGE2. Measurements of the simultaneous fluxes of sodium and chloride showed that after PGE2 was added there was a net flux of chloride from the basal to the apical side (secretion) that was equal to the change in Isc. The effects of PGE2 were inhibited by furosemide in the basal medium. We conclude that PGE2 stimulates a process of chloride secretion in A6 cells.


1999 ◽  
Vol 277 (6) ◽  
pp. R1725-R1732 ◽  
Author(s):  
Patricio Silva ◽  
Richard J. Solomon ◽  
Franklin H. Epstein

We studied the modes of activation of the salt-secreting rectal gland of the spiny dogfish, Squalus acanthias, by the native cardiac peptide CNP. The stimulatory action of CNP in isolated perfused glands is inhibited by 10 mM procaine, presumably by blocking release of vasoactive intestinal peptide (VIP) from nerves. Procaine reduces the slope of the dose-response curve of human CNP and that of shark CNP (each P < 0.0001). CNP increases short-circuit current in cultured rectal gland cells from 4.8 ± 1.6 to 27.0 ± 7.8 μA/cm2. It also stimulates the secretion of chloride in isolated perfused glands in the presence of 10 mM procaine from 72 ± 31 to 652 ± 173 μeq ⋅ h−1 ⋅ g−1. These results suggest that CNP has a direct cellular action not mediated by the neural release of VIP. The residual stimulation of perfused glands in the presence of procaine was almost completely inhibited by staurosporine [10 nM; an inhibitor of protein kinase C (PKC)] from 652 ± 173 to 237 ± 61 μeq ⋅ h−1 ⋅ g−1. Although CNP stimulates guanylyl cyclase in shark rectal gland, chloride secretion of perfused glands was not elicited by 8-bromoadenosine-cGMP (8-BrcGMP) alone nor by the activator of PKC phorbol ester. The combination of PKC activation and 8-BrcGMP infusion, however, stimulated chloride secretion in perfused glands from 94 ± 30 to 506 ± 61 μeq ⋅ h−1 ⋅ g−1, a level comparable to that observed in glands blocked with procaine. Several parallel pathways appear to be synergistic in activating chloride secretion stimulated by CNP in the rectal gland.


1995 ◽  
Vol 268 (3) ◽  
pp. R605-R613 ◽  
Author(s):  
W. M. Weber ◽  
U. Blank ◽  
W. Clauss

The dorsal integument of the medical leech Hirudo medicinalis exhibits a marked amiloride-sensitive Na+ absorption. With 20 mM Na+ in the apical solution, the transepithelial short-circuit current (Isc) was approximately 40% higher than with 115 mM Na+, whereas the transepithelial potential (VT) with 20 mM Na+ was -35.7 +/- 4.5 and -20.6 +/- 2.6 mV with 115 mM Na+. Amiloride (100 microM) inhibition at 20 mM apical Na+ was also significantly larger than with 115 mM Na+ in the solution. Benzamil (100 microM) showed additional inhibition after amiloride. Large transient overshooting currents occurred only when 115 mM Na+ was added after some minutes of Na(+)-free apical solution. Addition of adenosine 3',5'-cyclic monophosphate (cAMP) to the serosal side in the presence of 115 mM apical Na+ nearly doubled Isc. This cAMP effect was reduced to only 20% in the presence of 20 mM Na+. Guanosine 3',5'-cyclic monophosphate (cGMP) slightly increased Isc, whereas ATP showed biphasic potency. Removal of calcium from the apical side resulted in a large stimulation of amiloride-sensitive Isc only in the presence of 115 mM Na+. When currents were activated with cAMP, a deprivation of Ca2+ modestly reduced the amiloride-sensitive Isc. The Na+ channel of leech integument was found highly selective for Na+ over other monovalent cations. The permeability ratio for Na+ over K+ was approximately 30:1; the selectivity relationship for the investigated cations was Na+ > Li+ > NH4+ > K+ approximately Cs+ approximately Rb+.


1984 ◽  
Vol 247 (2) ◽  
pp. F277-F281
Author(s):  
T. Saito ◽  
S. Yoshida

The addition of phenformin to the solution bathing the mucosal side of frog skin resulted in a sustained stimulation of short-circuit current accompanied by an increase in open-circuit potential and total conductance of the membrane. The flux of 22Na from the mucosal to the serosal side of the skin was increased by phenformin, whereas no significant effect on the flux from the serosal to the mucosal side was observed. The increases in the short-circuit current and total conductance with phenformin were completely abolished by the addition of 5 X 10(-5) M amiloride, which blocks sodium permeability at the apical surface of the membrane. Thus, the stimulation of active sodium transport in frog skin by phenformin would be due to the increase in the amiloride-sensitive sodium permeability of the membrane. Phenformin may prove to be a useful tool for the study of sodium transport in amphibian epithelia.


Sign in / Sign up

Export Citation Format

Share Document