Inhibition of angiotensinogen production by angiotensin II analogues in human hepatoma cell line

1989 ◽  
Vol 257 (5) ◽  
pp. C888-C895 ◽  
Author(s):  
E. Coezy ◽  
I. Darby ◽  
J. Mizrahi ◽  
B. Cantau ◽  
M. H. Donnadieu ◽  
...  

The aim of this study was to examine in Hep G2, a human hepatoma-derived cell line, the presence of angiotensin II (ANG II) receptors and the effect of ANG II and its analogues on angiotensinogen production. The presence of ANG II receptors was demonstrated using a long-acting ANG II analogue, 125I-labeled [Sar1]ANG II. A single class of specific binding sites was identified in these cells with a dissociation constant (Kd) of 2 nM. The number and affinity of these binding sites were not changed by [Sar1]ANG II treatment over 24 h. ANG II showed an inhibitory effect on angiotensinogen production. [Sar1]ANG II also exhibited a similar inhibitory effect as that of ANG II but to a greater extent and therefore was used throughout these studies. [Sar1]ANG II inhibited angiotensinogen production in a dose-dependent manner, exhibiting a half-maximal inhibitory concentration (IC50) of 2 nM. Other ANG II analogues showed similar effects on angiotensinogen production. In order of decreasing ability, they were [Sar1]ANG II greater than [Sar1-Ala8]ANG II greater than [Sar1-Val8]ANG II greater than [Sar1-Val5-(Br5)-Phe8]ANG II greater than [Sar1-Val5-DPhe8]ANG II. Results of these studies show that the Hep G2 cell possesses specific ANG II receptors and that [Sar1]ANG II induces a dose-dependent inhibition of angiotensinogen production in this system.

1970 ◽  
Vol 1 (2) ◽  
Author(s):  
Mingmin Wang

Objective: To investigate the effect of fresh royal jelly on the proliferation of human hepatoma cell line SMMC-7721. Methods: We found that the administration of fresh royal jelly could alleviate the condition of hepatocellular carcinoma patients in a certain extent. The human hepatocellular carcinoma cell line SMMC-7721 was cultured in vitro. MTT colorimetric method was used to treat fresh cells and serum containing human serum. The effect of SMMC-7721 proliferation was observed. Results: The aqueous solution of fresh royal jelly had a certain effect on the proliferation of hepatoma cell line SMMC-7721 in a dose-dependent manner. The serum containing fresh royal jelly could inhibit the proliferation of human hepatoma cell line SMMC-7721, and its inhibitory effect showed dose-dependent. Conclusion: The serum containing fresh royal jelly has a significant inhibitory effect on the proliferation of human hepatoma cell line SMMC-7721 and its anti-cancer effect may be derived from its metabolites or stimulating the formation of immune-reactive substances in the body, in which in the clinical treatment of liver cancer and research have a certain value.


1989 ◽  
Vol 62 (02) ◽  
pp. 667-672 ◽  
Author(s):  
M Otter ◽  
Th J C Van Berkel ◽  
D C Rijken

SummaryIn this study, binding and degradation of tissue-type plasminogen activator (t-PA) by the human hepatoma cell line Hep G2 was investigated. Binding at 4° C was time-dependent and reached a maximum after ca. 2 hours. Scatchard analysis of saturation experiments showed about 170,000 high affinity binding sites for t-PA per cell with an apparent Kd of 90 nM. These binding sites were calcium-dependent. Part of the binding to the hepatoma cells was non-saturable, owing to a large amount of low affinity binding sites which are at least partially located on the extracellular matrix of the cells. Competition with mannose- and galactose-terminated glycoproteins had no effect on total binding of 125I-t-PA. Degradation products of 125I-t-PA were found in the supernatant after a short lag phase and then increased linearly for at least 5 hours at 37° C. Degradation could be inhibited by chloroquine, NH4Cl and NaN3. We conclude that the human hepatoma cell line Hep G2 has a specific binding mechanism for t-PA which is not mediated by known carbohydrate receptor systems. Binding is followed by cellular uptake and degradation in the lysosomes.


2014 ◽  
Vol 25 (3-4) ◽  
pp. 24-33
Author(s):  
O. I. Dzjuba ◽  
M. V. Yatsenko

The article deals with the history of the study and the current state of research of physiological and biochemical properties of the plant genus Sedum that are useful for human and has been used in folk medicine for many years. It was noticed that antioxidant properties of extracts from plants S. sarmentosum, S. sempervivoides, S. takesimense were caused by the presence of phenolic compounds. Methanol extract of plants S. takesimense exhibited strong scavenging activities against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide radicals as well as significant inhibitory effects on lipid peroxidation and low density lipoprotein (LDL) oxidation induced by a metal ion Cu2+. Various immunomodulatory activities of various fractions of plants extracts (S. dendroideum, S. kamtschaticum, S. sarmentosum, S. telephium) are observed. It was shown that the ethanol extract of S. sarmentosum and it’s fractions suppressed specific antibody and cellular responses to ovalbumin in mice. The methanol extract of plants S. sarmentosum reduced the levels of anti-inflammatory markers, such as volume of exudates, number of polymorphonuclear leukocytes, suppressed nitric oxide synthesis in activated macrophages via suppressed induction of inducible nitric oxide synthase (iNOS). Polysaccharides fractions from plants S. telephium inducing productions of tumor necrosis factor alpha (TNF-α), increasing the intensity of phagocytosis in vitro and in vivo. Methanol extract from the whole part of S. kamtschaticum strongly inhibit PGE2 production from lipopolysaccharide-induced RAW 264.7 cells, a mouse macrophage cell line via modulating activity in gene expression of the enzyme cyclooxygenase-2 (COX-2). The methanol extract of plants S. sarmentosum and the major kaempferol glycosides from S. dendroideum have antinociceptive activity. It was noticed that anti-adipogenic activity of extracts from plants S. kamtschaticum were caused by inhibition of peroxisome-proliferator-activated receptor γ (PPARγ) expression and it’s dependent target genes, such as genes encoding adipocyte protein 2 (аР2), lipoprotein lipase (LPL), adiponectin and CD36. Polysaccharides fractions from S. telephium cause inhibition of cell adhesion of human fibroblast (MRC5) to laminin and fibronectin via interfere with integrin-mediated cell behaviour and they contributed to the role of polysaccharides in cell-matrix interaction. The methanol extract of plants S. sarmentosum exhibited a significant inhibitory activity in the chick embryo chorioallantoic membrane angiogenesis in a dose-dependent manner. The crude alkaloid fraction of S. sarmentosum caused a dose-dependent inhibition of cell proliferation on murine hepatoma cell line BNL CL.2 and human hepatoma cell line HepG2 without necrosis or apoptosis. Alkaloids from plants S. sarmentosum may improve survival of hepatoma patients via the inhibition of excessive growth of tumor cells. Plant’s juices have antiviral activity (S. sarmentosum, S. spurium, S. stahlii). Crude ethanol extract S. praealtum have spermicidal activity of the in mice and a relevant inhibitory effect of aqueous extract on human spermatozoa motility as well as an anti-fertilizing activity in rats. Hepatoprotective triterpenes, e.g., δ-amyrone, 3-epi-δ-amyrin, δ-amyrin and sarmentolin were isolated from S. sarmentosum. 2- and 2,6-substituted piperidine alkaloids (e.g., norsedamine, allosedridine, sedamine, allosedamine) are observed in plants S. acre, which in the presence of data on the use of pyridine and piperidine derivatives for treating neurodegenerative diseases (e.g., Alzheimer's disease), points on the promising research in this area. Taking into account that biologically active compounds are accumulated in the aboveground vegetative organs of plants of Sedum, the prospects of further study of the use of Sedum for the purposes of biotechnology and in the pharmaceutical industry becomes apparent. This work extends the existing views regarding the use of plants Sedum.


1996 ◽  
Vol 270 (3) ◽  
pp. H857-H868 ◽  
Author(s):  
R. M. Touyz ◽  
J. Fareh ◽  
G. Thibault ◽  
B. Tolloczko ◽  
R. Lariviere ◽  
...  

Vasoactive peptides may exert inotropic and chronotropic effects in cardiac muscle by modulating intracellular calcium. This study assesses effects of angiotensin II (ANG II) and endothelin-1 (ET-1) on intracellular free calcium concentration ([Ca2+]i) in cultured cardiomyocytes from neonatal and adult rats. [Ca2+]i was measured microphotometrically and by digital imaging using fura 2 methodology. Receptor subtypes through which these agonists induce responses were determined pharmacologically and by radioligand binding studies. ANG II and ET-1 increased neonatal atrial and ventricular cell [Ca2+]i transients in a dose-dependent manner. ANG II (10(-11) to 10(-7) M) failed to elicit [Ca2+]i responses in adult cardiomyocytes, whereas ET-1 increased [Ca2+]i in a dose-dependent manner. The ETA receptor antagonist BQ-123 significantly reduced (P 7< 0.05) ET-1 induced responses, and the ETB receptor agonist IRL-1620 (10(-7) to 10(-5) M) significantly increased (P < 0.05) [Ca2+]i in neonatal and adult cardiomyocytes. ET-1 binding studies demonstrated 85% displacement by BQ-123 and approximately 15% by the ETB receptor agonist sarafotoxin S6c, suggesting a predominance of ETA receptors. Competition binding studies for ANG II failed to demonstrate significant binding on adult ventricular myocytes, indicating the absence or presence of very few ANG II receptors. These data demonstrate that ANG II and ET-1 have stimulatory [Ca2+]i effects on neonatal cardiomyocytes, whereas in adult cardiomyocytes, ANG II-induced effects are insignificant, and only ET-1-induced responses, which are mediated predominantly via ETA receptors, are preserved. Cardiomyocyte responses to vasoactive peptides may thus vary with cardiac development.


2006 ◽  
Vol 84 (1) ◽  
pp. 102-111 ◽  
Author(s):  
Monica P Polo ◽  
Margarita G de Bravo

Monoterpenes have multiple pharmacological effects on the metabolism of mevalonate. Geraniol, a dietary monoterpene, has in vitro and in vivo anti-tumor activity against several cell lines. We have studied the effects of geraniol on growth, fatty-acid metabolism, and mevalonate metabolism in the human hepatocarcinoma cell line Hep G2. Up to 100 µmol geraniol/L inhibited the growth rate and 3-hydroxymethylglutaryl coenzyme A reductase (HMG-CoA) reductase activity of these cells. At the same concentrations, it increased the incorporation of cholesterol from the medium in a dose-dependent manner. Geraniol-treated cells incorporated less 14C-acetate into nonsaponifiable lipids, inhibiting its incorporation into cholesterol but not into squalene and lanosterol. This is indicative of an inhibition in cholesterol synthesis at a step between lanosterol and cholesterol, a fact confirmed when cells were incubated with 3H-mevalonate. The incorporation of 3H-mevalonate into protein was also inhibited, whereas its incorporation into fatty acid increased. An inhibition of Δ5 desaturase activity was demonstrated by the inhibition of the conversion of 14C-dihomo-γ-linolenic acid into arachidonic acid. Geraniol has multiple effects on mevalonate and lipid metabolism in Hep G2 cells, affecting cell proliferation. Although mevalonate depletion is not responsible for cellular growth, it affects cholesterogenesis, protein prenylation, and fatty-acid metabolism.Key words: geraniol, Hep G2, HMG-CoA reductase, mevalonate, fatty acids.


Sign in / Sign up

Export Citation Format

Share Document