Augmentation of GABA-induced current in frog sensory neurons by pentobarbital

1990 ◽  
Vol 258 (3) ◽  
pp. C452-C460 ◽  
Author(s):  
N. Akaike ◽  
N. Tokutomi ◽  
Y. Ikemoto

The effect of pentobarbital sodium (PB) on the gamma-aminobutyric acid (GABA)-induced macroscopic and microscopic Cl- currents (ICl and iCl, respectively) was studied in the soma membrane of isolated frog sensory neurons using a rapid concentration-jump and patch-clamp technique. The GABA-induced ICl was composed of a transient peak and a steady plateau. PB shifted the concentration-response curve of the GABA-induced peak ICl to the left without affecting the maximum value. The apparent dissociation constant (KD) decreased from 13 microM at control to 8.0, 4.8, and 2.9 microM by adding 10, 30, and 100 microM PB, respectively. PB also shifted the concentration-response curve for the plateau ICl to the left and augmented the maximum value of the plateau, indicating an increase in the available receptor-channel complex. The Hill coefficient (n = 2) in concentration-response curves of both peak and plateau responses was not changed by adding PB. Both the activation and desensitization phases of GABA-induced ICl consisted of two exponential components. PB significantly increased the time constant of slow desensitization component at all concentrations of GABA used. In the "inside-out" configuration, PB markedly increased the open probability (Po) of a GABA-gated single Cl- channel having a conductance of 14.57 +/- 2.3 pS (n = 123) without affecting the single-channel conductance. The increase of Po was due to the prolongation of mean open time (tau of the tau os) and shortening of mean closed time (tau cf and tau cs), resulting in the increase of channel-opening events.(ABSTRACT TRUNCATED AT 250 WORDS)

1992 ◽  
Vol 67 (5) ◽  
pp. 1367-1374 ◽  
Author(s):  
S. Itabashi ◽  
K. Aibara ◽  
H. Sasaki ◽  
N. Akaike

1. The pharmacologic properties of gamma-aminobutyric acid (GABA)-induced Cl- current (ICl) were studied in the paratracheal ganglion cells freshly dissociated from 7- to 10-day-old rat trachea in a whole-cell recording mode by the use of a conventional patch-clamp technique. 2. GABA- and muscimol-induced currents increased sigmoidally in a concentration-dependent manner, and both currents reversed at approximately -3 mV, which was close to the Cl- equilibrium potential (ECl). 3. Strychnine (STR) at low concentration and bicuculline (BIC) inhibited GABA response competitively, whereas STR at the higher concentrations, benzylpenicillin (PCG), or picrotoxin (PTX) inhibited noncompetitively. Inhibition of GABA response by PCG but not other antagonists was voltage dependent, indicating that PCG acts as a Cl- channel blocker. 4. The concentration-response curve of pentobarbital sodium (PB)-induced ICl was bell shaped. At concentrations higher than 10(-3) M, both the peak and plateau currents decreased, and a transient "hump" current appeared immediately after washing out PB. In the presence of PB, the concentration-response curve of GABA shifted toward left without changing the maximum response. 5. Although diazepam (DZP) at concentration used did not induce a response, it potentiated the GABA response in a concentration-dependent manner between 10(-8) and 10(-6) M. DZP also caused a parallel shift toward left in the concentration-response curve of GABA. 6. PB or DZP further enhanced the GABA response in the presence of the other agent. 7. It is concluded that the properties of GABAA receptors in the paratracheal ganglion cells are essentially similar to those reported in other preparations.


2004 ◽  
Vol 92 (5) ◽  
pp. 2789-2801 ◽  
Author(s):  
Andreas Feigenspan ◽  
Reto Weiler

GABA-induced currents have been characterized in isolated horizontal cells from lower vertebrates but not in mammalian horizontal cells. Therefore horizontal cells were isolated after enzymatical and mechanical dissociation of the adult mouse retina and visually identified. We recorded from horizontal cell bodies using the whole cell and outside-out configuration of the patch-clamp technique. Extracellular application of GABA induced inward currents carried by chloride ions. GABA-evoked currents were completely and reversibly blocked by the competitive GABAA receptor antagonist bicuculline (IC50 = 1.7 μM), indicating expression of GABAA but not GABAC receptors. Their affinity for GABA was moderate (EC50 = 30 μM), and the Hill coefficient was 1.3, corresponding to two GABA binding sites. GABA responses were partially reduced by picrotoxin with differential effects on peak and steady-state current values. Zinc blocked the GABA response with an IC50 value of 7.3 μM in a noncompetitive manner. Furthermore, GABA receptors of horizontal cells were modulated by extracellular application of diazepam, zolpidem, methyl 6,7-dimethoxy-4-ethyl-β-carboxylate, pentobarbital, and alphaxalone, thus showing typical pharmacological properties of CNS GABAA receptors. GABA-evoked single-channel currents were characterized by a main conductance state of 29.8 pS and two subconductance states (20.2 and 10.8 pS, respectively). Kinetic analysis of single-channel events within bursts revealed similar mean open and closed times for the main conductance and the 20.2-pS subconductance state, resulting in open probabilities of 44.6 and 42.7%, respectively. The ratio of open to closed times, however, was significantly different for the 10.8-pS subconductance state with an open probability of 57.2%.


1991 ◽  
Vol 260 (4) ◽  
pp. C745-C749 ◽  
Author(s):  
T. Nakagawa ◽  
M. Wakamori ◽  
T. Shirasaki ◽  
T. Nakaye ◽  
N. Akaike

The gamma-aminobutyric acid (GABA)-induced macroscopic Cl- current (ICl) was investigated in acutely isolated nucleus tractus solitarii (NTS) neurons by a conventional patch-clamp technique combined with a rapid drug application method. The GABA- and muscimol-induced ICl increased in a concentration-dependent manner. The reversal potentials were close to the Cl- equilibrium potential. Pentobarbital sodium (PB) itself elicited a current. Bicuculline (BIC), strychnine (STR), picrotoxin, benzylpenicillin (PCG), Cd2+, and Zn2+ suppressed the GABA response in a concentration-dependent manner. Both BIC and STR shifted the concentration-response curve for GABA response to the right, whereas PCG suppressed the maximum response without affecting the threshold, indicating that BIC and STR antagonized competitively and PCG noncompetitively. The inhibitory action of PCG on GABA response was in a highly voltage-dependent manner. PB shifted the concentration-response curve for GABA response to the left. The augmentatory effect of PB was voltage dependent.


1995 ◽  
Vol 268 (2) ◽  
pp. C389-C401 ◽  
Author(s):  
S. Chepilko ◽  
H. Zhou ◽  
H. Sackin ◽  
L. G. Palmer

The renal K+ channel (ROMK2) was expressed in Xenopus oocytes, and the patch-clamp technique was used to assess its conducting and gating properties. In cell-attached patches with 110 mM K+ in the bath and pipette, the reversal potential was near zero and the inward conductance (36 pS) was larger than the outward conductance (17 pS). In excised inside-out patches the channels showed rectification in the presence of 5 mM Mg2+ on the cytoplasmic side but not in Mg(2+)-free solution. Inward currents were also observed when K+ was replaced in the pipette by Rb+, NH4+, or thallium (Tl+). The reversal potentials under these conditions yielded a selectivity sequence of Tl+ > K+ > Rb+ > NH4+. On the other hand, the slope conductances for inward current gave a selectivity sequence of K+ = NH4+ > Tl+ > Rb+. The differences in the two sequences can be explained by the presence of cation binding sites within the channel, which interact with Rb+ and Tl+ more strongly and with NH4+ less strongly than with K+. Two other ions, Ba2+ and Cs+, blocked the channel from the outside. The effect of Ba2+ (1 mM) was to reduce the open probability of the channels, whereas Cs+ (10 mM) reduced the apparent single-channel current. The effects of both blockers are enhanced by membrane hyperpolarization. The kinetics of the channel were also studied in cell-attached patches. With K+ in the pipette the distribution of open times could be described by a single exponential (tau 0 = 25 ms), whereas two exponentials (tau 1 = 1 ms, tau 2 = 30 ms) were required to describe the closed-time distribution. Hyperpolarization of the oocyte membrane decreased the open probability and tau 0, and increased tau 1, tau 2, and the number of long closures. The presence of Tl+ in the pipette significantly altered the kinetics, reducing tau 0 and eliminating the long-lived closures. These results suggest that the gating of the channel may depend on the nature of the ion in the pore.


1997 ◽  
Vol 273 (6) ◽  
pp. C2010-C2021 ◽  
Author(s):  
S. D. Koh ◽  
G. M. Dick ◽  
K. M. Sanders

The patch-clamp technique was used to determine the ionic conductances activated by ATP in murine colonic smooth muscle cells. Extracellular ATP, UTP, and 2-methylthioadenosine 5′-triphosphate (2-MeS-ATP) increased outward currents in cells with amphotericin B-perforated patches. ATP (0.5–1 mM) did not affect whole cell currents of cells dialyzed with solutions containing ethylene glycol-bis(β-aminoethyl ether)- N, N, N′, N′-tetraacetic acid. Apamin (3 × 10−7M) reduced the outward current activated by ATP by 32 ± 5%. Single channel recordings from cell-attached patches showed that ATP, UTP, and 2-MeS-ATP increased the open probability of small-conductance, Ca2+-dependent K+ channels with a slope conductance of 5.3 ± 0.02 pS. Caffeine (500 μM) enhanced the open probability of the small-conductance K+ channels, and ATP had no effect after caffeine. Pyridoxal phosphate 6-azophenyl-2′,4′-disulfonic acid tetrasodium (PPADS, 10−4 M), a nonselective P2 receptor antagonist, prevented the increase in open probability caused by ATP and 2-MeS-ATP. PPADS had no effect on the response to caffeine. ATP-induced hyperpolarization in the murine colon may be mediated by P2y-induced release of Ca2+ from intracellular stores and activation of the 5.3-pS Ca2+-activated K+ channels.


1998 ◽  
Vol 274 (4) ◽  
pp. L475-L484 ◽  
Author(s):  
Lucky Jain ◽  
Xi-Juan Chen ◽  
Lou Ann Brown ◽  
Douglas C. Eaton

We used the patch-clamp technique to study the effect of nitric oxide (NO) on a cation channel in rat type II pneumocytes [alveolar type II (AT II) cells]. Single-channel recordings from the apical surface of AT II cells in primary culture showed a predominant cation channel with a conductance of 20.6 ± 1.1 (SE) pS ( n = 9 cell-attached patches) and Na+-to-K+selectivity of 0.97 ± 0.07 ( n = 7 cell-attached patches). An NO donor, S-nitrosoglutathione (GSNO; 100 μM), inhibited the basal cation-channel activity by 43% [open probability ( P o), control 0.28 ± 0.05 vs. GSNO 0.16 ± 0.03; P < 0.001; n = 16 cell-attached patches], with no significant change in the conductance. GSNO reduced the P o by reducing channel mean open and increasing mean closed times. GSNO inhibition was reversed by washout. The inhibitory effect of NO was confirmed by using a second donor of NO, S-nitroso- N-acetylpenicillamine (100 μM; P o, control 0.53 ± 0.05 vs. S-nitroso- N-acetylpenicillamine 0.31 ± 0.04; −42%; P < 0.05; n = 5 cell-attached patches). The GSNO effect was blocked by methylene blue (a blocker of guanylyl cyclase; 100 μM), suggesting a role for cGMP. The permeable analog of cGMP, 8-bromo-cGMP (8-BrcGMP; 1 mM), inhibited the cation channel in a manner similar to GSNO ( P o, control 0.38 ± 0.06 vs. 8-BrcGMP 0.09 ± 0.02; P < 0.05; n = 7 cell-attached patches). Pretreatment of cells with 1 μM KT-5823 (a blocker of protein kinase G) abolished the inhibitory effect of GSNO. The NO inhibition of channels was not due to changes in cell viability. Intracellular cGMP was found to be elevated in AT II cells treated with NO (control 13.4 ± 3.6 vs. GSNO 25.4 ± 4.1 fmol/ml; P < 0.05; n = 6 cell-attached patches). We conclude that NO suppresses the activity of an Na+-permeant cation channel on the apical surface of AT II cells. This action appears to be mediated by a cGMP-dependent protein kinase.


2020 ◽  
Vol 21 (14) ◽  
pp. 4876
Author(s):  
Zbigniew Burdach ◽  
Agnieszka Siemieniuk ◽  
Waldemar Karcz

In contrast to the well-studied effect of auxin on the plasma membrane K+ channel activity, little is known about the role of this hormone in regulating the vacuolar K+ channels. Here, the patch-clamp technique was used to investigate the effect of auxin (IAA) on the fast-activating vacuolar (FV) channels. It was found that the macroscopic currents displayed instantaneous currents, which at the positive potentials were about three-fold greater compared to the one at the negative potentials. When auxin was added to the bath solution at a final concentration of 1 µM, it increased the outward currents by about 60%, but did not change the inward currents. The imposition of a ten-fold vacuole-to-cytosol KCl gradient stimulated the efflux of K+ from the vacuole into the cytosol and reduced the K+ current in the opposite direction. The addition of IAA to the bath solution with the 10/100 KCl gradient decreased the outward current and increased the inward current. Luminal auxin reduced both the outward and inward current by approximately 25% compared to the control. The single channel recordings demonstrated that cytosolic auxin changed the open probability of the FV channels at the positive voltages to a moderate extent, while it significantly increased the amplitudes of the single channel outward currents and the number of open channels. At the positive voltages, auxin did not change the unitary conductance of the single channels. We suggest that auxin regulates the activity of the fast-activating vacuolar (FV) channels, thereby causing changes of the K+ fluxes across the vacuolar membrane. This mechanism might serve to tightly adjust the volume of the vacuole during plant cell expansion.


1989 ◽  
Vol 62 (6) ◽  
pp. 1388-1399 ◽  
Author(s):  
N. Akaike ◽  
N. Inomata ◽  
T. Yakushiji

1. Kinetic properties of gamma-aminobutyric acid (GABA)-gated inward and outward anion currents were investigated in the frog sensory neurons perfused internally and externally with various anions with the use of a rapid concentration-jump (termed as 'concentration-clamp') technique. 2. Extracellular Br- [( Br-]o) shifted the dose-response curves of GABA-induced inward anion currents to the left without affecting the maximum values, whereas [Cl-]o, [I-]o, [No3-]o, [HCOO-]o, and [CH3COO-]o altered the rate of desensitization differently without shifting the GABA dose-response curves, indicating that the kinetics of desensitization phase are affected differently by various extracellular anions. 3. [CH3COO-]o suppressed the maximum current of the dose-response curve of the GABA-induced inward ICl without affecting Kd. 4. Both activation and desensitization phases of GABA-induced ICl consisted of fast and slow components, respectively. [Br-]o, [I-]o, and [NO3-]o significantly prolonged the slow desensitization component, whereas both [HCOO-]o and [CH3COO-]o shortened it. The fast desensitization and the fast and slow activation components were also affected by these foreign anions. 5. GABA dose-response curves of inward currents carried by various intracellular anions (Cl-, Br-, NO3-, I-, SCN-, HCOO-, F-, CH3COO-, CH3CH2COO-, BrO3-, and ClO3-) while keeping a constant [Cl-]o had a constant Kd value but different saturating maximum currents. There were no marked differences among their current kinetics except in the case of SCN-, indicating that the current kinetics is not affected by replacing intracellular Cl- [( Cl-]i) with various foreign anions. 6. The configuration and amplitude of GABA-gated outward anion currents at a constant [Cl-]i reflected the extracellular action of individual anions on the anion-binding site of GABA receptor associated with the anion-selective channel. 7. The relative conductances of the various anions, calculated from the maximum peak currents in dose-response curves of the GABA-induced inward anion currents at a constant [Cl-]o, was in the sequence: I- greater than Br- greater than or equal to NO3- greater than ClO3- greater than SCN- greater than or equal to Cl- greater than HCOO- greater than BrO3- greater than CH3COO- greater than F- greater than CH3CH2COO-.(ABSTRACT TRUNCATED AT 400 WORDS)


1994 ◽  
Vol 267 (4) ◽  
pp. C1036-C1044 ◽  
Author(s):  
Z. Fan ◽  
Y. Tokuyama ◽  
J. C. Makielski

The effect of intracellular acidification (low pHi) on open probability of the ATP-sensitive K+ (KATP) channel was examined in insulin-secretion cells using an inside-out configuration of the patch-clamp technique. In an insulin-secreting cell line beta-TC3, KATP single-channel currents (IKATP) were readily recorded in the absence of internal ATP. ATP (50 microM and 0.5 mM) dramatically decreased the channel activity. A step decrease of intracellular pH (pHi) from 7.4 to 6.7 or 6.3 in the presence of ATP gradually increased the channel activity. In addition, low pHi in the presence of ATP could partially restore channel activity lost in a process called "rundown." Kinetic analysis revealed a change in channel gating at low pHi with ATP. The bursting durations of IKATP at pHi 6.3 in the presence of ATP were significantly longer than those at pHi 7.4 in the absence of ATP. These results suggest that the increased channel activity at low pHi might have resulted from a mechanism involving an alteration of channel conformation. We also observed an inhibitory effect of low pHi on channel activity. However, the inhibitory effect was much more apparent at pHi 5.7 and was only partially reversible. The activation effect of low pHi on IKATP in the presence of ATP was also observed in acutely isolated rat islet cells and in another insulin-secretion cell line RINm5F, although the effect was weaker and was variable among experiments. We conclude that, as in frog skeletal muscle and cardiac muscle, an increase in channel activity at low pHi is one of the mechanisms underlying proton modulation of IKATP in insulin-secreting cells.


1993 ◽  
Vol 264 (3) ◽  
pp. F565-F574 ◽  
Author(s):  
G. Frindt ◽  
R. B. Silver ◽  
E. E. Windhager ◽  
L. G. Palmer

Na channels in the apical membrane of the rat renal cortical collecting tubule were studied using the patch-clamp technique. Channel activity was monitored in cell-attached patches on tubules that were split open to expose the luminal surface. Channel number (N), open probability (Po), and single-channel currents (i) were measured at 37 degrees C during continuous superfusion of the tubule. Addition of amiloride (10 microM) or benzamil (0.5 microM) to the superfusate resulted in a twofold increase in the mean number of open channels (NPo) after 2 min. The effect closely paralleled an increase in i, presumably reflecting membrane hyperpolarization. The effects on both i and NPo reversed within 3 min after removal of amiloride. The increase in NPo was accounted for, at least in part, by an increase in Po. Several cellular events may contribute to this phenomenon. Channels could be activated directly by membrane hyperpolarization and by cell shrinkage, both of which are known to occur during acute administration of amiloride. In addition, benzamil elicited a 30% decrease in intracellular Ca compared with control levels as measured by fura-2 fluorescence. A comparable decrease observed after reducing extracellular Ca did not increase NPo. No changes in cell pH, measured with 2',7'-bis-(carboxyethyl)-5(6)-carboxyfluorescein fluorescence, were observed. The modulation of channel Po by the rate of Na entry into the cell will act as a feedback mechanism to maintain cellular ion homeostasis, and this may also serve to distribute Na reabsorption more evenly along the nephron.


Sign in / Sign up

Export Citation Format

Share Document