Effect of compartmentalized Ca2+ ions on electrical bursting activity of pancreatic beta-cells

1990 ◽  
Vol 258 (5) ◽  
pp. C955-C965 ◽  
Author(s):  
T. R. Chay

Patch-clamp single-channel and whole cell recordings have revealed new insights into the ionic channel properties in the pancreatic beta-cells. I have modeled the electrical events during the burst activity based on the observations that 1) the whole cell Ca2+ current has two functionally distinct components (fast and slow), 2) a fast component is inhibited by intracellular Ca2+, 3) a slow component is inactivated by depolarization, and 4) a significant fraction of the outward current is carried by the Ca2(+)-sensitive, voltage-gated K+ channels [K(Ca, V) channels]. The model contains a feature that the Ca2+ concentration in the submembrane compartment ([Ca2+]s) is higher than that in the cellular phase. At the plateau phase, [Ca2+]s is high enough to activate the K(Ca, V) channels. In addition to the K(Ca, V) channels, the model contains a voltage-activated Ca2+ channel that is quickly blocked by Ca2+ and slowly inhibited by voltage. Because the Ca2+ channel has an intracellular Ca2(+)-dependent inactivation gate, the increase in [Ca2+]s can inactivate the Ca2+ channels. According to this model, the spikes during the plateau phase are caused by a rapid movement of Ca2+ into and out of the compartment. Because of a rapid change in [Ca2+]s, the two competing currents, ICa and IK(Ca, V), fluctuate rapidly; the fluctuation leads to an emergence of spikes. The slow underlying wave is due to a voltage-dependent inactivation gate of the Ca2+ channels, which slowly closes as a result of depolarization. This model differs radically from my previous models, which featured a slowly varying intracellular Ca2+ concentration that was responsible for the underlying slow wave. Although the previous models give plateau fractions (the ratio between the plateau duration and cyclic time) to be far less than unity, the present model is the first of its kind that allows plateau fractions to be in the near-unity range.

1990 ◽  
Vol 95 (6) ◽  
pp. 1041-1059 ◽  
Author(s):  
P A Smith ◽  
K Bokvist ◽  
P Arkhammar ◽  
P O Berggren ◽  
P Rorsman

The contribution of Ca2(+)-activated and delayed rectifying K+ channels to the voltage-dependent outward current involved in spike repolarization in mouse pancreatic beta-cells (Rorsman, P., and G. Trube. 1986. J. Physiol. 374:531-550) was assessed using patch-clamp techniques. A Ca2(+)-dependent component could be identified by its rapid inactivation and sensitivity to the Ca2+ channel blocker Cd2+. This current showed the same voltage dependence as the voltage-activated (Cd2(+)-sensitive) Ca2+ current and contributed 10-20% to the total beta-cell delayed outward current. The single-channel events underlying the Ca2(+)-activated component were investigated in cell-attached patches. Increase of [Ca2+]i invariably induced a dramatic increase in the open state probability of a Ca2(+)-activated K+ channel. This channel had a single-channel conductance of 70 pS [( K+]o = 5.6 mM). The Ca2(+)-independent outward current (constituting greater than 80% of the total) reflected the activation of an 8 pS [( K+]o = 5.6 mM; [K+]i = 155 mM) K+ channel. This channel was the only type observed to be associated with action potentials in cell-attached patches. It is suggested that in mouse beta-cells spike repolarization results mainly from the opening of the 8-pS delayed rectifying K+ channel.


1993 ◽  
Vol 101 (5) ◽  
pp. 767-797 ◽  
Author(s):  
P A Smith ◽  
F M Aschroft ◽  
C M Fewtrell

Ba2+ currents through L-type Ca2+ channels were recorded from cell-attached patches on mouse pancreatic beta cells. In 10 mM Ba2+, single-channel currents were recorded at -70 mV, the beta cell resting membrane potential. This suggests that Ca2+ influx at negative membrane potentials may contribute to the resting intracellular Ca2+ concentration and thus to basal insulin release. Increasing external Ba2+ increased the single-channel current amplitude and shifted the current-voltage relation to more positive potentials. This voltage shift could be modeled by assuming that divalent cations both screen and bind to surface charges located at the channel mouth. The single-channel conductance was related to the bulk Ba2+ concentration by a Langmuir isotherm with a dissociation constant (Kd(gamma)) of 5.5 mM and a maximum single-channel conductance (gamma max) of 22 pS. A closer fit to the data was obtained when the barium concentration at the membrane surface was used (Kd(gamma) = 200 mM and gamma max = 47 pS), which suggests that saturation of the concentration-conductance curve may be due to saturation of the surface Ba2+ concentration. Increasing external Ba2+ also shifted the voltage dependence of ensemble currents to positive potentials, consistent with Ba2+ screening and binding to membrane surface charge associated with gating. Ensemble currents recorded with 10 mM Ca2+ activated at more positive potentials than in 10 mM Ba2+, suggesting that external Ca2+ binds more tightly to membrane surface charge associated with gating. The perforated-patch technique was used to record whole-cell currents flowing through L-type Ca2+ channels. Inward currents in 10 mM Ba2+ had a similar voltage dependence to those recorded at a physiological Ca2+ concentration (2.6 mM). BAY-K 8644 (1 microM) increased the amplitude of the ensemble and whole-cell currents but did not alter their voltage dependence. Our results suggest that the high divalent cation solutions usually used to record single L-type Ca2+ channel activity produce a positive shift in the voltage dependence of activation (approximately 32 mV in 100 mM Ba2+).


1995 ◽  
Vol 268 (2) ◽  
pp. E185-E193 ◽  
Author(s):  
M. Akiyoshi ◽  
M. Kakei ◽  
M. Nakazaki ◽  
H. Tanaka

Effects of a new hypoglycemic drug, N-[trans-4-isopropylcyclohexy-carbonyl]-D-phenylalanine (A-4166), on membrane current were investigated using the patch-clamp technique in single pancreatic beta-cells isolated from rats. A-4166, at a concentration of 10 microM, depolarized membrane potential of beta-cells and evoked action potentials in the presence of 2.8 mM glucose. The single ATP-sensitive K+ channel (K-ATP channel) current recorded in cell-attached membrane patches was reversibly inhibited by A-4166 (> 0.1 microM) without a change in the single-channel conductance of the K-ATP channel. Both A-4166 and tolbutamide inhibited the whole cell K-ATP channel current with half-maximum inhibition (IC50) of 0.23 and 12.8 microM, respectively (Hill coefficient = 1). In inside-out membrane patches, the IC50 with A-4166 occurred at 4.5 nM, in contrast to 0.7 microM for tolbutamide. A-4166 did not affect L- and T-type Ca2+ channels or the time-dependent outward current. We conclude that A-4166 specifically blocks the K-ATP channel and that the blockade is more potent than that of tolbutamide. The action of A-4166 underlies the mechanism by which the drug stimulates insulin secretion from beta-cells.


1990 ◽  
Vol 153 (1) ◽  
pp. 129-140 ◽  
Author(s):  
T. P. FENG ◽  
ZHENG-SHAN DAI

Although the entry of calcium ions into the presynaptic nerve terminals through voltage-gated Ca2+ channels is now universally recognized as playing an essential role in evoked transmitter release at the neuromuscular junction (NMJ), and indeed in chemical synapses generally, we have as yet very little direct knowledge of the Ca2+ channels of the presynaptic terminals. In this work, making use of cocultured nerve and muscle cells from Xenopus embryos, we studied the NMJ formed between the soma of identified cholinergic neurones and myoball, which allowed the use of patch-clamps on both the pre- and postsynaptic components. Both whole-cell and single-channel recordings of Ca2+ channels in the presynaptic cell were made. We found only one type of voltage-gated Ca2+ channel with highvoltage activation and slow inactivation characteristics, allowing its classification either as the L or the N type. The channels were susceptible to block by metenkephalin but not to block by nifedipine or to enhancement by Bay K 8644. This combination of pharmacological properties favours their classification as the N type. Preliminary observations on the correlation between calcium currents and transmitter release disclosed a strikingly rapid run-down of the evoked release with unchanged calcium currents and spontaneous release during whole-cell recording, indicating a specific wash-out effect on some link between calcium entry and evoked transmitter release.


1990 ◽  
Vol 63 (4) ◽  
pp. 725-737 ◽  
Author(s):  
S. K. Florio ◽  
C. D. Westbrook ◽  
M. R. Vasko ◽  
R. J. Bauer ◽  
J. L. Kenyon

1. We used the patch-clamp technique to study voltage-activated transient potassium currents in freshly dispersed and cultured chick dorsal root ganglion (DRG) cells. Whole-cell and cell-attached patch currents were recorded under conditions appropriate for recording potassium currents. 2. In whole-cell experiments, 100-ms depolarizations from normal resting potentials (-50 to -70 mV) elicited sustained outward currents that inactivated over a time scale of seconds. We attribute this behavior to a component of delayed rectifier current. After conditioning hyperpolarizations to potentials negative to -80 mV, depolarizations elicited transient outward current components that inactivated with time constants in the range of 8-26 ms. We attribute this behavior to a transient outward current component. 3. Conditioning hyperpolarizations increased the rate of activation of the net outward current implying that the removal of inactivation of the transient outward current allows it to contribute to early outward current during depolarizations from negative potentials. 4. Transient current was more prominent on the day the cells were dispersed and decreased with time in culture. 5. In cell-attached patches, single channels mediating outward currents were observed that were inactive at resting potentials but were active transiently during depolarizations to potentials positive to -30 mV. The probability of channels being open increased rapidly (peaking within approximately 6 ms) and then declined with a time constant in the range of 13-30 ms. With sodium as the main extracellular cation, single-channel conductances ranged from 18 to 32 pS. With potassium as the main extracellular cation, the single-channel conductance was approximately 43 pS, and the channel current reversed near 0 mV, as expected for a potassium current. 6. We conclude that the transient potassium channels mediate the component of transient outward current seen in the whole-cell experiments. This current is a relatively small component of the net current during depolarizations from normal resting potentials, but it can contribute significant outward current early in depolarizations from hyperpolarized potentials.


1994 ◽  
Vol 71 (5) ◽  
pp. 1873-1882 ◽  
Author(s):  
M. C. McKay ◽  
S. I. Dworetzky ◽  
N. A. Meanwell ◽  
S. P. Olesen ◽  
P. H. Reinhart ◽  
...  

1. We used electrophysiological techniques to examine the effects of 5-trifluoromethyl-1-(5-chloro-2-hydroxyphenyl)-1,3-dihydro-2H-benzimidaz ole- 2-one (NS004) on large-conductance calcium-activated potassium (BK) channels. 2. We used recordings from excised membrane patches (cell-attached and inside-out single-channel configurations) and whole-cell patch-clamp recordings to examine the effects of NS004 on single BK channels and whole-cell outward currents, respectively, in rat GH3 clonal pituitary tumor cells. We also tested NS004 on voltage-clamped BK channels isolated from rat brain plasma membrane preparations and reconstituted into planar lipid bilayers. Finally, we used two-electrode voltage-clamp techniques to study the effects of NS004 on currents expressed in Xenopus laevis oocytes by the recently described Slo BK clone from Drosophila. 3. In GH3 cells and in Xenopus oocytes expressing the Slo gene product NS004 produced an increase in an iberiotoxin- or tetraethylammonium-sensitive whole-cell outward current, respectively. NS004 produced a significant increase in the activity of single GH3 cell BK channels and rat brain BK channels reconstituted into planar lipid bilayers. In both systems this was characterized by an increase in channel mean open time, a decrease in interburst interval, and an apparent increase in channel voltage/calcium sensitivity. 4. These data indicate that NS004 could be useful for investigating the biophysical and molecular properties of BK channels and for determining the functional consequences of the opening of BK channels.


1999 ◽  
Vol 114 (4) ◽  
pp. 535-550 ◽  
Author(s):  
Shalini Gera ◽  
Lou Byerly

Ca2+ channel inactivation in the neurons of the freshwater snail, Lymnaea stagnalis, was studied using patch-clamp techniques. In the presence of a high concentration of intracellular Ca2+ buffer (5 mM EGTA), the inactivation of these Ca2+ channels is entirely voltage dependent; it is not influenced by the identity of the permeant divalent ions or the amount of extracellular Ca2+ influx, or reduced by higher levels of intracellular Ca2+ buffering. Inactivation measured under these conditions, despite being independent of Ca2+ influx, has a bell-shaped voltage dependence, which has often been considered a hallmark of Ca2+-dependent inactivation. Ca2+-dependent inactivation does occur in Lymnaea neurons, when the concentration of the intracellular Ca2+ buffer is lowered to 0.1 mM EGTA. However, the magnitude of Ca2+-dependent inactivation does not increase linearly with Ca2+ influx, but saturates for relatively small amounts of Ca2+ influx. Recovery from inactivation at negative potentials is biexponential and has the same time constants in the presence of different intracellular concentrations of EGTA. However, the amplitude of the slow component is selectively enhanced by a decrease in intracellular EGTA, thus slowing the overall rate of recovery. The ability of 5 mM EGTA to completely suppress Ca2+-dependent inactivation suggests that the Ca2+ binding site is at some distance from the channel protein itself. No evidence was found of a role for serine/threonine phosphorylation in Ca2+ channel inactivation. Cytochalasin B, a microfilament disrupter, was found to greatly enhance the amount of Ca2+ channel inactivation, but the involvement of actin filaments in this effect of cytochalasin B on Ca2+ channel inactivation could not be verified using other pharmacological compounds. Thus, the mechanism of Ca2+-dependent inactivation in these neurons remains unknown, but appears to differ from those proposed for mammalian L-type Ca2+ channels.


2005 ◽  
Vol 288 (3) ◽  
pp. F493-F504 ◽  
Author(s):  
Daniel A. Gray ◽  
Gustavo Frindt ◽  
Yu-Yang Zhang ◽  
Lawrence G. Palmer

Whole cell K+ current was measured by forming seals on the luminal membrane of principal cells in split-open rat cortical collecting ducts. The mean inward, Ba2+-sensitive conductance, with 40 mM extracellular K+, was 76 ± 12 and 141 ± 22 nS/cell for animals on control and high-K+ diets, respectively. The apical contribution to this was estimated to be 3 and 16 nS/cell on control and high-K+ diets, respectively. To isolate the basolateral component of whole cell current, we blocked ROMK channels with either tertiapin-Q or intracellular acidification to pH 6.6. The current was weakly inward rectifying when bath K+ was ≥40 mM but became more strongly rectified when bath K+ was lowered into the physiological range. Including 1 mM spermine in the pipette moderately increased rectification, but most of the outward current remained. The K+ current did not require intracellular Ca2+ and was not inhibited by 3 mM ATP in the pipette. The negative log of the acidic dissociation constant (p Ka) was ∼6.5. Block by extracellular Ba2+ was voltage dependent with apparent Ki at −40 and −80 mV of ∼160 and ∼80 μM, respectively. The conductance was TEA insensitive. Substitution of Rb+ or NH4+ for K+ led to permeability ratios of 0.65 ± 0.07 and 0.15 ± 0.02 and inward conductance ratios of 0.17 ± 0.03 and 0.57 ± 0.09, respectively. Analysis of Ba2+-induced noise, with 40 mM extracellular K+, yielded single-channel currents of 0.39 ± 0.04 and −0.28 ± 0.04 pA at voltages of 0 and −40 mV, respectively, and a single-channel conductance of 17 ± 1 pS.


Sign in / Sign up

Export Citation Format

Share Document