Reduced prostacyclin formation after reoxygenation of anoxic endothelium

1990 ◽  
Vol 259 (5) ◽  
pp. C738-C745 ◽  
Author(s):  
S. L. Hempel ◽  
D. L. Haycraft ◽  
J. C. Hoak ◽  
A. A. Spector

Human umbilical vein endothelial cells subjected to 24 h of anoxia followed by reoxygenation released less prostacyclin (PGI2) in response to thrombin, calcium ionophore A23187, or arachidonic acid. This was associated with a substantial increase in stimulated platelet adherence. Increased lactate dehydrogenase and 51Cr release occurred after 1 h of reoxygenation, but the high rate of release did not persist during the subsequent 23 h of reoxygenation. The changes in platelet adherence and PGI2 release partially resolved over 24 h. PGI2 formation from prostaglandin H2 was not reduced, suggesting that cyclooxygenase activity, but not prostacyclin synthase, is affected by reoxygenation. A decrease in arachidonic acid release from cellular lipids also occurred. The reduction in cyclooxygenase activity, but not arachidonic acid release, was prevented by the presence of ibuprofen during reoxygenation. Addition of catalase or superoxide dismutase during reoxygenation increased PGI2 release but did not completely overcome the reduction relative to control cultures. These findings suggest that the increase in platelet adherence during reoxygenation may be mediated in part by a change in cyclooxygenase activity. This is only partly overcome by extracellular oxygen species scavengers but is prevented by the presence of a reversible cyclooxygenase inhibitor during reoxygenation.

1992 ◽  
Vol 263 (4) ◽  
pp. L454-L459
Author(s):  
W. E. Holden ◽  
E. M. Burnham ◽  
M. A. Lee ◽  
S. P. Bagby

Eicosanoid products of arachidonic acid are suspected modulators of hypoxic vasoconstriction in the pulmonary vasculature. Vascular endothelial cells (EC) release several eicosanoids, but there is disagreement regarding the effect of hypoxia on EC eicosanoid release. We postulated that the oxygen level of growth in culture might influence the release of eicosanoids during acute hypoxia. We studied EC cultured from the main pulmonary arteries of pigs and grown at either 5% or near 20% oxygen, representing the normal limits of oxygen exposure to endothelium in normal lungs. Although cultures grown in 5% oxygen grew slightly faster by 4 days, the confluent cell number, protein content, and baseline eicosanoid release were no different compared with paired cultures grown in 20% oxygen. However, with an acute decrease in oxygen level, cultures grown in 5% oxygen released less prostaglandin E2, F2 alpha, and 6-ketoprostaglandin F1 alpha compared with amounts released at the growth oxygen level. In contrast, cultures grown in 20% oxygen released increased amounts of these eicosanoids compared with release at the growth oxygen level. Release of thromboxane B2 was not significantly different during hypoxia between cultures grown at 5% vs. 20% oxygen. In other experiments, cyclooxygenase activity, stimulated arachidonic acid release by calcium ionophore A23187, and uptake of arachidonic acid were no different in cultures grown at 5% vs. 20% oxygen. However, arachidonic acid release during hypoxia was reduced in 5% cultures and increased in 20% cultures.(ABSTRACT TRUNCATED AT 250 WORDS)


1982 ◽  
Vol 93 (3) ◽  
pp. 690-697 ◽  
Author(s):  
D L Bareis ◽  
F Hirata ◽  
E Schiffmann ◽  
J Axelrod

Rabbit neutrophils were stimulated with the chemotactic peptide fMet-Leu-Phe in the presence of the methyltransferase inhibitors homocysteine (HCYS) and 3-deazaadenosine (3-DZA). HCYS and 3-DZA inhibited chemotaxis, phospholipid methylation, and protein carboxymethylation in a dose-dependent manner. The chemotactic peptide-stimulated release of [14C]arachidonic acid previously incorporated into phospholipid was also partially blocked by the methyltransferase inhibitors. Stimulation by fMet-Leu-Phe or the calcium ionophore A23187 caused release of arachidonic acid but not of previously incorporated [14C]-labeled linoleic, oleic, or stearic acids. Unlike the arachidonic acid release caused by fMet-Leu-Phe, release stimulated by the ionophore could not be inhibited by HCYS and 3-DZA, suggesting that the release was caused by a different mechanism or by stimulating a step after methylation in the pathway from receptor activation to arachidonic acid release. Extracellular calcium was required for arachidonic acid release, and methyltransferase inhibitors were found to partially inhibit chemotactic peptide-stimulated calcium influx. These results suggest that methylation pathways may be associated with the chemotactic peptide receptor stimulation of calcium influx and activation of a phospholipase A2 specific for cleaving arachidonic acid from phospholipids.


Blood ◽  
1992 ◽  
Vol 79 (3) ◽  
pp. 708-712 ◽  
Author(s):  
CB Guo ◽  
A Kagey-Sobotka ◽  
LM Lichtenstein ◽  
BS Bochner

Abstract Human mast cells have been purified from uterine tissues, and their surface marker profile and function have been evaluated as part of ongoing studies of mast cell heterogeneity. Using a panel of antibodies, purified uterine mast cells (UMC; 81% +/- 7% purity, n = 10) were analyzed by immunofluorescence and flow cytometry for surface expression of various antigens. Consistent with previous analyses of mast cells from other tissues, UMC expressed HLA class I, IgE, c-kit receptor, CD9, CD33, CD43, CD45, and CD54, while CD11a, CD11b, CD14, CD16, CD23, and CD64 were not detected. Unlike other mast cells, UMC expressed CD11c/CD18 (p150,95) and CD32 (Fc gamma RII). Additional antigens not previously studied on mast cells included the selectin LECAM-1 (Leu-8) and several beta 1 and beta 3 integrins; expression of very late activation antigen-4 (VLA-4) (CD49d/CD29), VLA-5 (CD49e/CD29), and the vitronectin receptor (CD51/CD61) was seen. Functional studies showed that treatment of human umbilical vein endothelial cells with interleukin-1 (5 ng/mL for 4 hours) resulted in a twofold to threefold increase in adhesiveness for UMC. Purification procedures did not alter histamine release responses to anti-IgE or the calcium ionophore A23187, and treatment of UMC with an anti-CD32 monoclonal antibody (IV.3) did not induce histamine release or alter anti-IgE-induced release. These data suggest that UMC may possess unique phenotypic characteristics, and support the concept of mast cell heterogeneity.


Blood ◽  
1989 ◽  
Vol 73 (8) ◽  
pp. 2074-2076 ◽  
Author(s):  
HM Tsai ◽  
RL Nagel ◽  
VB Hatcher ◽  
II Sussman

Abstract The multimeric composition of human endothelial cell (EC)-derived von Willebrand factor (vWF) was studied using SDS-agarose gel electrophoresis and autoradiography. Two multimers were found in lysates prepared from confluent cultures of human umbilical vein endothelial cells. The smaller multimer had a molecular weight (mol wt) of approximately 950 Kd, while the second was larger than those seen in plasma. When electrophoresis was performed using the discontinuous buffer system of Ruggeri and Zimmerman, the small multimer consisted of a single band migrating with the slowest-moving component of the corresponding plasma triplet. The large EC-vWF multimer was detected in culture media conditioned with EC monolayers for ten minutes. It remained the only multimer in media conditioned for up to three days. Calcium ionophore A23187 increased the amount of the large vWF multimer released into the culture media, but did not change its multimeric composition. The small multimer was never detected in the EC- conditioned media. These findings suggest that (1) a large, fully polymerized multimer of vWF is released from the ECs, while the small multimer probably represents a major intermediate component in the process of multimerization, and (2) plasma vWF multimers are probably generated from the large endothelial vWF after it is released into the circulation.


1996 ◽  
Vol 271 (6) ◽  
pp. C1879-C1886 ◽  
Author(s):  
D. A. Wessels ◽  
S. L. Hempel

Human endothelial cells exposed to H2O2 demonstrate decreased prostacyclin (PGI2) synthesis due to decreased prostaglandin H synthase (PGH synthase) activity. We tested the hypothesis that PGH synthase activity could be protected from H2O2 by a reversible nonsteroidal anti-inflammatory drug. Experiments demonstrate that ibuprofen if present during H2O2 exposure, protects endothelial cell PGH synthase against the decrease in prostaglandin formation caused by H2O2. Additional studies demonstrated that decreasing arachidonic acid release from cell phospholipids during H2O2 exposure did not protect PGI2 synthesis following H2O2 exposure. In other experiments, ibuprofen did not chelate Fe2+ in a conformation that inhibited the reactivity of Fe2+. In addition, ibuprofen did not scavenge HO. However, we demonstrate that ibuprofen significantly protects purified PGH synthase cyclooxygenase activity from the effects of H2O2. The results confirm the hypothesis. These findings suggest that ibuprofen displaces oxidant species from the cyclooxygenase site of PGH synthase, thereby preventing oxidation of the functional groups important for PGH synthase activity.


1987 ◽  
Author(s):  
L O Carreras ◽  
J Maclouf ◽  
G Tobelem ◽  
J P Caen

Several investigators have demonstrated that endothelial cells have heterogeneous intrinsic properties depending on their vascular origin. In this respect, very limited knowledge exists concerning the production of eicosanoids by human microvascular endothelial cells (HMEC). The aim of this study was to determine: 1) the pattern of the production of cyclooxygenase metabolites by cultured HMEC from omental adipose tissue as compared to the classical study of human umbilical vein endothelial cells (HUVEC); 2) the modification of this metabolism upon leukotrienes (LTs) stimulation. Cultured HMEC produced prostaglandin (PG) E2, PGF2 , 6-keto-PGF1 , and PGD2 (measured by enzymoimmunoassay). In basal conditions, PGD2 was the main product released in the supernatant. Upon stimulation with thrombin, arachidonic acid and calcium ionophore A23187, a marked increase in the production of PGE2, PGF2 , and 6-keto-PGFj , was observed; these results were quite different from HUVEC. In contrast, PGD2 remained unchanged under our experimental conditions and thromboxane B2 was always undetectable. In all cases, the release of PGE2 and PGF2 , was higher than that of 6-keto-PGFj . A considerable amount of the metabolites produced remained cell-associated. The total production (release + cell bound) of cyclooxygenase products was stimulated by LTC4 and LTD4 in a dose-dependent manner (10-9 to 10-6 M). The production of PGD2 was unchanged. LTC4 and LTD4 were almost equally potent, but LTB4 was unable to stimulate PG synthesis (n=4). The production of metabolites induced by 1 uM LTC4 or LTD4 was even higher than that obtained in the presence of high concentrations of thrombin (5 U/ml). This contrasted with the more pronounced stimulation of thrombin on HUVEC as compared to LTs. In the kinetic studies (n=2) we have observed a slow time-course of release of PGE2 and 6-keto-PGF1 into the supernatant of LTs-stimulated HMEC (half-maximal formation at 14-15 min). The stimulatory activity of LTC4 and LTD4 on the production of vasoactive cyclooxygenase metabolites by HMEC could be relevant in inflammatory processes.


Sign in / Sign up

Export Citation Format

Share Document